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nn Learning Objectives
This chapter will help readers to understand the following:
	1.	 How advances in genetic technology have affected the study of plant-herbivore 

interactions
	2.	 The prevalence of genetic variation in herbivory resistance traits in natural plant 

populations
	3.	 Assessment of natural selection by herbivores in plant populations
	4.	 Ways in which hypotheses for the evolution of plant defenses can be tested at a 

genetic level
	5.	 How studies of gene expression can inform our understanding of plant-herbi-

vore interactions

4.1	 �Introduction

A large proportion of global biodiversity and biomass consists of plants and their 
herbivores. Invertebrate herbivores such as insects, and vertebrate plant browsers 
such as deer and other mammals, consume plant tissue and impose a strong selec-
tive pressure on plants that has been ongoing for millions of years. Fossil evidence 
suggests that insects, for example, have been feeding on plants for an estimated 400 
million years (Labandeira 2013; Bruce 2015). The evolutionary relationship 
between insects and their host plants is discussed in Ehrlich and Raven (1964), a 
now classic work that has received more than 2500 citations to date. Plants have 
evolved to produce a great diversity of defenses to resist herbivory (Hanley et al. 
2007; Erb et al. 2012; Rasmann and Agrawal 2009). Phytochemical defenses are 
key among these defenses and are present in all higher plants in a wide variety of 
form and function (Fraenkel 1959; Wink 2003). The importance of co-evolutionary 
relationships, or reciprocal evolutionary interactions between herbivores and 
plants, in the evolution of both plants and herbivores has since been highlighted 
many times, at both macroevolutionary (e.g., Becerra 1997) and microevolutionary 
(e.g., Mauricio and Rausher 1997) scales.

At a macroevolutionary scale, phytochemicals can play a key role in the evolu-
tion of host shifts by herbivorous insects. For example, a molecular phylogenetic 
study in the plant genus Bursera and the beetle genus Blepharida shows that the 
patterns of host shifts in Blepharida beetles are strongly associated with patterns of 
host phytochemical similarity in the Bursera genus (Becerra 1997). The interaction 
between these beetles and plant genus is specialized and is evolutionarily old. The 
plants produce a variety of terpenes that are present in resin canals in the plant 
leaves and stems and decrease Blepharida survival and growth rate (Becerra and 
Venable 1990).

At the microevolutionary scale, there is abundant evidence that herbivory 
reduces plant fitness, and that herbivores are agents of natural selection on plant 
resistance traits (Marquis 1992; Núñez-Farfán and Dirzo 1994; Sagers and Coley 
1995; Fornoni et al. 2003). For example, in Arabidopsis thaliana, the elimination of 
herbivores in a field experiment altered the pattern of selection on two defense 
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traits, glucosinolate concentrations and trichome density (Mauricio and Rausher 
1997). Likewise, herbivore-mediated natural selection was detected on stereochem-
istry of the secondary metabolites, sesquiterpene lactones, of common cocklebur 
(Xanthium strumarium). In natural environments, plants with cis-fused lactone ring 
junctions received higher levels of herbivory than those with trans-fused lactone 
ring junctions; herbivore damage was negatively correlated with plant fitness 
(Ahern and Whitney 2014). Finally, an assessment of selection imposed by both 
generalist and specialist herbivores (those with greater versus lesser dietary host 
breadth) in Datura stramonium demonstrated that generalists and specialists can 
impose divergent selection pressures on host plant resistance traits (Castillo et al. 
2014). Geographic variation in herbivore community composition can thus lead to 
differences in resistance among populations across a plant species range.

4.2	 �Types of Resistance Traits

Plant defenses against herbivory include resistance, tolerance, and temporal avoid-
ance. Resistance traits reduce the performance and/or preference of herbivores, 
while tolerance is a measure the extent to which plant fitness is affected by herbiv-
ory, relative to fitness in the absence of damage (Strauss and Agrawal 1999). In this 
chapter, I focus on plant resistance traits, and use “resistance” and “defense” inter-
changeably.

Plant secondary compounds are metabolites that do not play a role in the growth 
and development of the plant (Fraenkel 1959; Berenbaum and Zangerl 2008; but 
see Erb and Kliebenstein 2020). Hundreds of thousands of secondary compound 
structures have been elucidated, with many others yet uncharacterized (Wink 1988; 
Pichersky and Lewinsohn 2011). Secondary compounds can be toxic, anti-nutritive 
or anti-digestive, and/or act to repel herbivores through low palatability (Mithöfer 
and Boland 2012). These phytochemicals are highly structurally diverse, and 
include classes such as phenolics, terpenoids, and alkaloids, among others 
(Harborne et al. 1999; Wink 2018). Some secondary compounds, such as lignin, 
are more generalized defenses that affect many types of herbivores (Franceschi 
et  al. 2005). Others, such as many alkaloids, have specific targets- enzymes or 
nucleic acids, for example- that they interact with in an herbivore (Mithöfer and 
Boland 2012). Secondary compounds can act individually or interactively to deter 
herbivores (Mason and Singer 2015).

There is often consistency in broad patterns of  classes of  compounds across 
closely related taxa (Wink 2003; Liscombe et al. 2005), but this consistency, or 
phylogenetic signal, is not always strong. Divergence in phytochemical defenses 
can occur through the evolution of novel compounds and/or the evolution of 
novel combinations of  compounds. For example, in the wild parsnip system, 
plants escape from adapted herbivores by producing ecologically novel com-
pounds, often from the same chemical precursor (Berenbaum 1978, 1983). 
Alternatively, in the tropical plant genus Inga, closely related species produce dif-
ferent combinations (and presence/absence patterns) of  commonly produced 
compounds (Coley et al. 2018).
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While much of  the literature focuses on phytochemical traits, there are numer-
ous, complex plant defenses that have evolved in response to herbivory, including 
physical defenses. Physical defenses are structural deterrents that impede the abil-
ity of  herbivores to feed on the plant, and include traits such as toughened leaves, 
spines, thorns, or trichomes (hairlike extensions from the plant epidermis), or the 
incorporation of  hard materials such as silica into the foliar tissue (Hanley et al. 
2007). Thorns, spines, and trichomes can be present in many forms, and some 
trichomes produce glandular exudates that are toxic or can trap or repel herbi-
vores (Levin 1973; Elle and Hare 2000; Hauser 2014). Trichome glandular exu-
dates often contain secondary compounds, thus merging physical and chemical 
resistance (Glas et al. 2012). An example of  this latter phenomenon is with sting-
ing nettle (Urtica dioica), where the trichomes contain secondary compounds that 
are released by contact and confer a stinging sensation to mammals (Pollard and 
Briggs 1984). While they are overlooked in the literature to a much greater extent 
than phytochemical resistance traits, physical resistance traits have been clearly 
shown to be effective against herbivory (Mauricio 1998; Hanley et  al. 2007; 
Barton 2016).

Resistance to herbivory can occur through direct defenses, which make the plant 
a less suitable host due to changes in physical or phytochemical defense traits, or 
indirect defenses, through which plants reduce levels of herbivory by interacting 
with herbivore enemies (Heil 2008; Pearse et al. 2020). Indirect defenses include the 
induction of volatile compounds that attract parasitoids and predators (Dicke 
1999; Dicke and Hilker 2003), and traits that provide shelter, food, or other incen-
tives to predators (Heil et al. 2001; Heil 2008; Weber and Agrawal 2014; Weber 
et al. 2016).

4.3	 �Temporal and Spatial Variation in Resistance Traits

Perhaps in part because of the sessile nature of plants, plant defenses are not static 
over time or across plants. Plants may produce direct and indirect defenses consti-
tutively, in the absence of herbivory or regardless of levels of herbivory; alterna-
tively, plants also induce defenses through plastic changes in levels of defense 
following herbivory (Adler and Karban 1994; Agrawal 1998; Cipollini 1998; 
Karban et al. 1999). Induction of defenses can be selected for if  past/current her-
bivory is a reliable predictor of future herbivory, and if  herbivory decreases plant 
fitness (Karban and Baldwin 1997; Harvell and Tollrian 1999). Plants can also 
plastically alter the availability of essential amino acids and nutrients available for 
digestion by the herbivore (Chen et al. 2005; Felton 2005). In addition to induction 
of defense within a plant generation, defenses can also be transgenerationally 
induced, whereby offspring defense phenotypes are altered by environmental signal 
in the parental generation and expressed independently of changes in the offspring 
genotype (Holeski et al. 2012b). This transgenerational induction can occur via 
epigenetic or maternal effects (Richards 2006; Roach and Wulff  1987). Epigenetic 
effects are heritable changes in traits that are mediated by mechanisms other than 
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alterations in the DNA sequence, such as DNA methylation and histone modifica-
tion (Rapp and Wendel 2005; Hauser et al. 2011).

Both constitutive and induced resistance can change as plants develop (Boege 
and Marquis 2005; Barton and Koricheva 2010; Holeski et al. 2012a). True leaves 
from different developmental, or ontogenetic, stages (e.g., juvenile versus adult) are 
usually anatomically and biochemically different, with different patterns of cellu-
lar differentiation (Poethig 1997; Mauricio 2005). The direction of change in resis-
tance traits across ontogenetic stages is variable; some species have higher levels of 
resistance in the juvenile developmental stage relative to the adult (Price et al. 1987; 
Kearsley and Whitham 1989; Cole et al. 2020), while others have increased resis-
tance in the adult developmental stage relative to the juvenile (Karban and Thaler 
1999).

Finally, levels of defense can change in a predictable manner across the course 
of a growing season. These temporal changes in (usually phytochemical) defense 
are likely in part due to shifting allocational priorities, for example between defense, 
growth, and reproduction) as leaves age, as well as dilution as leaves expand. 
Physiological changes across a season can also affect defense concentrations, and 
are caused by shifts in photoperiod, temperature, and water and nutrient availabil-
ity (Darrow and Bowers 1997; Holeski et al. 2012a; Koricheva and Barton 2012).

4.4	 �Evolution of Plant Resistance Hypotheses

Many hypotheses have been developed to explain how patterns in defense produc-
tion within and across populations or closely related species may have evolved. 
Prominent among these are the Resource Allocation Hypothesis (RAH; Coley 
et al. 1985) and Optimal Defense Theory (ODT; Rhoades 1979).

The Resource Availability Hypothesis (RAH) hypothesis was formulated spe-
cifically for inter-species differences in plant defenses, while Optimal Defense 
Theory (ODT) is typically used to describe intra-species differences. Both are test-
able hypotheses. The RAH posits that defense investment is dependent on growth 
rate; long-lived species invest more heavily in defenses than do short-lived species, 
due to the cost-benefit ratio of the defense investment (Coley et al. 1985; Endara 
and Coley 2011). This hypothesis assumes that shorter life cycles are synonymous 
with rapid growth rate, so that the negative impact of losing leaf area is low in these 
species (Endara and Coley 2011). The RAH has since been extrapolated to an 
intra-species context (Hahn and Maron 2016; López-Goldar et al. 2020).

Three basic predictions of ODT (Rhoades 1979; Herms and Mattson 1992; 
Koricheva 2002; Stamp 2003) are that, first, plants will evolve a level of defense 
that is positively related to rates of herbivory and negatively related to allocational 
or ecological cost. Second, plants will differentially allocate defense to different 
parts or tissues, with greater investment in tissues with high fitness values or where 
the cost of defense is lower. Third, plants will increase defense in response to attack, 
a form of plasticity that is often referred to as induction. ODT predicts that the 
capacity for induction should be negatively correlated with levels of constitutive 
defense.
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While hypotheses about the processes governing allocation of resources to 
plant defense differ, one common thread in contemplating the evolution of  defense 
production within or across natural plant populations is the genetic basis of 
defenses. Genetic variation in traits within a plant population, or differences among 
individuals in DNA sequence of genes that underlie focal traits, is a necessary pre-
requisite to evolution. Historically, the study of plant defense traits has focused on 
phenotypic variation. As molecular genetic tools and knowledge gained from use 
of these tools have continued to develop, an increasing number of studies are 
directly assessing genetic-based patterns of trait production and trade-offs between 
traits. This work has provided insight into the genetic mechanisms behind the phe-
notypic patterns of defense trait evolution that we observe, as well as information 
about the evolutionary potential for plant resistance traits. Evolutionary/ecologi-
cal hypotheses for patterns of defense trait production, among them the Research 
Allocation Hypothesis and Optimal Defense Theory, were developed when under-
standing of the genetic underpinnings of traits was not well understood. Studies of 
genetic variation during that era were at the level of protein electrophoresis. Testing 
these hypotheses at the level of genes or genetic correlations, rather than pheno-
types and phenotypic correlations, was unprecedented 30–40 years ago (.  Fig. 4.1).

4.5	 �Microevolution of Plant Resistance

While decades of research have provided us with valuable information about 
defense phenotypes, microevolutionary inferences from these studies were limited 
until studies with the power to elucidate differences in plant defense among geno-
types began in the 1980s (e.g., Berenbaum et al. 1986). In total, the relatively large 
body of work investigating genetic variation in resistance traits indicates it is wide-
spread across both herbaceous and woody plant species (Stowe 1998; Moore et al. 
2014).

4.5.1	 �Direct Defenses

While many studies demonstrating genotypic or genetic variation are done in her-
baceous plants, due to ease of experimentation, woody plants also show substan-
tial variation among genotypes in resistance traits, as showcased in multiple studies 
of Populus species (e.g., Havill and Raffa 1999; Lindroth and Hwang 1996; Holeski 
et  al. 2012a; Cope et  al. 2019). This work has also highlighted the interaction 
between genetics and the environment in influencing defense phenotypes. For 
example, in quaking aspen (Populus angustifolia), concentrations of phenolic gly-
cosides, a phytochemical defense, vary substantially with genotype. Environmental 
factors such as light and nutrient availability also (significantly) affect phenolic 
glycoside concentrations, and do so differently among genotypes, but genotype is 
the dominant influence on variation in this trait (Osier and Lindroth 2001, 2004, 
2006). In contrast, another phytochemical resistance trait, condensed tannin con-
centrations, is quite plastic, with variation in the trait typically influenced primarily 
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by environmental factors such as light availability, or tissue defoliation, rather than 
genotype (e.g., Hemming and Lindroth 1995; Osier and Lindroth 2004, 2006). 
Genotype-by-environment interactions, whereby individuals of the same genotype 
respond to an environmental factor differently in terms of plastic trait expression 
(e.g., Barker et al. 2019a; .  Fig. 4.2) also influence condensed tannin concentra-
tions in aspen, albeit to a lesser extent than particular environmental factors (Osier 
and Lindroth 2006). Ontogenetic trajectories of some resistance traits in cotton-
wood (Populus fremontii, P. angustifolia, and their hybrids) have also been shown 

History of molecular genetics and genomics            History of the study of plant resistance traits
                                                           

1950sStructure of DNA is elucidated
(Watson and Crick 1953, using 

data from R. Franklin and M. Wilkins)

1960sFirst study of natural levels of genetic variation
(in Drosophila) using protein electrophoresis

(Hubby and Lewontin 1966)

Breakthroughs in multiple techniques used to 
separate and detect nucleic acids using gel 
electrophoresis (e.g., Aaij and Borst 1972)

1970s

Methods for Sanger sequencing developed 
and used to sequence the first DNA genome, 

of a bacteriophage (Sanger et al. 1977a, b)

1990sDNA sequencing gets faster! DNA sequencing
of 1000 bases is completed in less than an hour 

(Salas-Solano et al. 1998)

Two Arabidopsis chromosomes sequenced via 
Sanger sequencing (Lin et al. 1999; Mayer et al. 1999)

early 2000s
Whole genome sequencing completed for 

Arabidopsis and rice, respectively 
(Arabidopsis Genome Initiative 2000; 

Goff et al. 2002; Yu et al. 2002)

2010
First plant full transcriptome 

(Arabadopsis; Filichkin et al. 2010)

2005, onward
Massively parallel, next-generation 
sequencing begins to become more 

accessible for many applications
 and plant species

(Shendure et al. 2005, 2017; Heather and Chain 2016) 

Phenotypic studies of plant resistance traits
(Fraenkel 1959; Beck 1965; Levin 1973)

1980s

Plant defense hypotheses developed,
based on phenotypic data (ODT, Rhoades 1979;
RAH, Coley et al. 1985)

Increased focus on identifying genetic variation for 
plant resistance traits (Service 1984; 
Berenbaum et al. 1986)

Use of molecular markers and QTL mapping
possible in an increasing array of species, due to
development of genetic tools (Byrne et al. 1997; 
Rossi et al. 1998; Rector et al. 2000)

Genetic variation documented in transgenerational 
induction of resistance (Agrawal 2001)

Transcriptome profiling studies of differences in gene 
expression in response to various types of herbivory 
(Reymond et al. 2000, 2004)

QTLs underlying herbivore community composition
identified (Bernhardsson and Ingvarsson 2012;
Bernhardsson et al. 2013; Barker et al. 2019b)

Genetically-modified plants used to test the direct effects
of genetic loci on herbivory resistance, natural selection,
and plant fitness (Schuman et al. 2012, 2015)

.      . Fig. 4.1  Timeline of  advances in development of  genetic and genomic technology (left panel) and 
of  genetic understanding of  plant-herbivore interactions (right panel)
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to have a genetic basis (Rehill et al. 2006; Holeski et al. 2012a; Cope et al. 2019). 
Research in another woody plant genus, Eucalyptus, has similarly found genotypic 
variation in resistance to mammalian browsers (O’Reilly-Wapstra et al. 2002, 2004, 
2005). Genetic variation exists between different natural populations of E. globulus 
for resistance to browsing by a generalist marsupial, Trichosurus vulpecula (com-
mon brushtail possum). As in Populus, ontogenetic trajectories of at least some 
resistance traits are genetically-based in E. globulus (O’Reilly-Wapstra et al. 2007).

Research in multiple species illustrates that intra-specific genetic variation 
(Dungey et al. 2000; Gosney et al. 2014, 2017) as well as genotypic variation (Fritz 
and Price 1988; Underwood and Rausher 2000) can affect herbivore population 
dynamics and/or herbivore community composition. It should be noted, however 
that genetic variation in resistance traits is often not measured in these studies, and 
the mechanism behind the effects of host genetic variation on herbivores is not 
always known. Studies of the influence of genotypic variation on herbivore com-
munities that do incorporate genotypic variation in resistance traits includes those 
in both herbaceous plants (Arabidopsis thaliana, Sato et al. 2019a; Oenothera bien-
nis, Johnson and Agrawal 2005, 2007) and woody plants (Populus sp., Wimp et al. 
2007; Keith et al. 2010; Robinson et al. 2012; Barbour et al. 2016; Barker et al. 
2018). Several of these experiments show that while genotypic variation in plant 
resistance traits does have some effect on arthropod community composition, com-
munity composition is most strongly associated with genotypic variation in other 
traits such as plant size, architecture, and phenology (e.g., Johnson and Agrawal 
2005; Robinson et al. 2012; Barker et al. 2018).

4.5.2	 �Natural Selection on Herbivory Resistance

In addition to genetic variation for a trait, the trait must be acted upon by natural 
selection (or drift) in order to evolve within a population. Rausher (1996) suc-
cinctly described three necessary points for demonstrating that herbivores impose 
natural selection on resistance traits in their host plants. First, one must show 
that genetic variation for the focal resistance traits exists. Second, the resistance 
traits must be demonstrated to be under natural selection. This might be done by 
showing that genotypes that differ in resistance also differ in fitness. Third, natu-
ral herbivores should be manipulated in presence/absence or in density, so that 
selection on resistance traits can be assessed across treatments. This latter point 

Environment A              Environment B

T
ra

it 
va

lu
e

Genotype 1

Genotype 2

.      . Fig. 4.2  Genotype-environ-
ment interactions schematic. 
Genotype 2 has a higher trait 
value in Environment A, relative 
to Genotype 1. Genotype 1 has a 
higher trait value in Environ-
ment B, relative to Genotype 2
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allows the effects of  herbivory to be disentangled from other environmental fac-
tors, and thus prevents selection on correlated traits from being confused with 
selection on resistance.

Several elegant studies in the 1980s–1990s completed these steps to demon-
strate that herbivores do impose natural selection on plant resistance traits. One 
comprehensive set of manipulative field experiments showing both genetic varia-
tion in resistance and natural selection acting on resistance was in morning glory 
(Ipomoea purpurea). In one field experiment, genetic variation for resistance to spe-
cialist flea beetles (Chaetocnema confinis) was found under ambient levels of her-
bivory (Simms and Rausher 1987). In complementary experiments that manipulated 
levels of herbivory into ambient versus no herbivory via an insecticide spray, addi-
tive genetic variation for resistance to both specialist and generalist herbivores was 
detected, as well as natural selection acting on this resistance (Rausher and Simms 
1989; Simms and Rausher 1989). Another study meeting the stringent criteria out-
lined by Rausher (1996) was done in jimson weed (Datura stramonium). The two 
major alkaloids in D. stramonium were found to be under negative directional 
selection and stabilizing selection, respectively, with insect herbivores as the agents 
of selection (Shonle and Bergelson 2000).

4.5.3	 �Indirect Defenses

While it is often inferred that indirect defense traits increase plant fitness if  they 
reduce herbivore damage, the effects of indirect defenses on plant fitness are rarely 
directly demonstrated. Exceptions include an experimental study of leaf domatia, 
small hair-tufts or pockets, in cotton (Gossypium hirsutum; Agrawal and Karban 
1997), and work on extrafloral nectaries and ant-plant associations in wild cotton 
(Gossypium thurberi; Rudgers 2004; Rudgers and Strauss 2004) and in partridge 
pea (Chamaecrista fasciculata; Rutter and Rausher 2004). In the latter example, 
there was evidence of costs of nectar production for plants in the absence of ants, 
and these costs were heightened by herbivory. When ants are present, however, 
natural selection favored high extrafloral nectar production (Rutter and Rausher 
2004).

4.5.4	 �Transgenerational Defense

As with within-generation defense, the evolutionary relevance of transgenerational 
induction in defenses is contingent upon whether there is genetic variation, as well 
as the impacts of transgenerational induction on plant fitness (Kalisz and 
Purugganan 2004; Richards 2006; Day and Bonduriansky 2011). Genetic variation 
in transgenerational induction of defense has been shown in multiple species, 
including wild radish, monkeyflower, and dandelion (Agrawal 2001, 2002; Holeski 
2007; Verhoeven et al. 2009; Colicchio 2017). Very few studies have incorporated 
an experimental design allowing both genetic variation for transgenerational plas-
ticity of defense and the effects on traits related to organism fitness to be examined 
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outside of a laboratory or greenhouse environment (Agrawal 2001, 2002; Holeski 
et al. 2013), and no published study has measured natural selection on transgen-
erational plasticity of defense.

Transgenerational plasticity in resistance has been demonstrated to affect plant 
fitness in natural conditions, although the rare studies investigating fitness have not 
also assessed genetic variation. In wild lima bean (Phaseolus lunatus), offspring of 
plants that experienced experimentally elevated levels of Chrysomelid beetle her-
bivory and offspring of control plants that experienced ambient herbivory were 
assessed in a field environment. Offspring of the elevated-herbivory plants showed 
higher levels of constitutive resistance traits in the seedlings and juvenile stages, as 
well as higher survival rates as seedlings (Ballhorn et al. 2016). Work in Carolina 
horsenettle (Solanum carolinense) demonstrates that the offspring of herbivore-
damaged plants have decreased time to flowering, and/or produced more flowers 
than the offspring of control plants (Nihranz et al. 2020).

In summary, while research in both herbaceous and woody plant systems illus-
trates that genetic variation in resistance traits is widespread, comprehensive stud-
ies of the portion of genetic variation that selection acts upon, additive genetic 
variation, as well as investigation of natural selection on these traits is labor-
intensive and is still relatively rare. In most cases, the ecological and evolutionary 
processes creating and maintaining the genetic variation and how they interact 
with the genome is still unclear. However, advances in genetic and genomic tech-
nology are allowing us to begin to elucidate these interactions, through identifica-
tion of how genes underlying resistance traits are structured, as well as how genes 
affect the ecological interactions of plants.

4.6	 �Identification of Genes Underlying Resistance

4.6.1	 �Genetic Mapping

As the power to conduct genetic analyses developed, a number of studies in differ-
ent plant species conducted genetic mapping experiments to identify genetic 
regions (quantitative trait loci or QTL) underlying defense trait variation; this tech-
nique can be followed by fine-scale mapping to identify specific genes within those 
regions (Doerge 2002). In plant species with short generation times that can be 
crossed with reasonable ease, genetic mapping can be done through controlled 
crosses of individuals divergent for the trait(s) of interest and QTL genetic map-
ping. Traditional QTL mapping is a labor-intensive process that involves pheno-
typing large numbers of individuals for traits of interest, in addition to molecular 
genetics work to genotype individuals at a number of genetic markers. Genetic 
markers are single nucleotides or small regions of the genome that are typically 
non-coding. Genetic markers are thus not directly involved with producing the 
trait of interest but may be linked to genes that do underlie these traits. QTL map-
ping is done through statistical techniques that associate presence of genetic vari-
ants (sequence variation, or different marker genotypes) to phenotypic variation in 
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the traits of interest. Genetic markers that are linked to genes influencing the trait 
of interest will show non-random statistical associations between marker genotype 
and a particular phenotype. QTL mapping ultimately tells us the amount of 
observed phenotypic variation in a trait that can be explained by a particular 
genomic region (Falconer and Mackay 1996; Lynch and Walsh 1998).

In plants with long generation times or those are not amenable to controlled 
crosses, other techniques such as genome-wide association mapping (GWAS), also 
called linkage disequilibrium mapping, are often used (Stinchcombe and Hoekstra 
2008; Hall et al. 2010). These studies require a study system in which application of 
next-generation sequencing technology is feasible (a rapidly increasing number of 
species) and have a number of logistical advantages over traditional QTL mapping 
(.  Table 4.1; Nordborg and Weigel 2008; Hall et al. 2010; Ingvarsson and Street 
2011).

Both traditional QTL mapping and GWAS studies have been used to gain 
understanding of the genetic basis of resistance traits. The initial goal of these 
studies is often to find out basic information about the genetic underpinnings of 
resistance traits. Genetic mapping studies of this nature have taken place in both 
agricultural and natural systems, to different ends. Genetic mapping for defense 
traits has been particularly common in agricultural plants, where this information 
can be used in breeding. Often in agriculture, the trait of interest is resistance itself, 
rather than phytochemical or physical traits conferring resistance. Extent of feed-
ing, insect weight gain, and/or insect mortality are common attributes used to infer 
resistance against multiple different herbivores and across a variety of crop species 
such as soybean and tomato (Rector et al. 2000; Komatsu et al. 2005; Yesudas et al. 
2010; Vargas-Ortiz et al. 2018). Genetic mapping of resistance in natural systems, 

.      . Table 4.1  Positive and negative aspects of  traditional QTL mapping analysis and 
genome-wide association mapping (GWAS)

Traditional QTL mapping Genome-wide association mapping
Pros Cons Pros Cons

Relatively fewer 
genetic markers 
and genomic 
resources needed
No statistical 
issues from 
population 
structure

Allelic variation is 
restricted to that of 
the wo parents in the 
initial cross
Controlled crosses 
are not possible/
feasible for many 
species
QTL identified 
typically encompass 
larger genomic 
regions than GWAS

Encompasses allelic 
variation within and 
across natural 
populations
Linkage blocks 
typically smaller than 
in QTL mapping, 
results in more 
fine-scale mapping

Relatively more genetic 
markers and genomic 
resources needed for 
adequate coverage
Population structure 
can lead to false 
positives

Both techniques require very large sample sizes. These techniques can also be used together to 
identify candidate genes. Both methods can be used in population and/or functional genomics 
studies
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while having some application to applied agricultural systems (Kloth et al. 2012), 
are most frequently done as part of fundamental evolutionary biology research, as 
part of the pursuit of understanding of the genetic basis of adaptation in natural 
plant populations (Orr and Coyne 1992; Rockman 2012).

4.6.2	 �QTL for Herbivory Resistance

Data accumulated from several decades of traditional QTL mapping and GWAS 
studies show that most resistance traits are quantitative traits that have multiple 
genes of both major and minor effects underlying phenotypes; as quantitative traits 
they may also be influenced by the environment. Model plant systems have had a 
head start in genetic mapping experiments due to the relative ease of obtaining 
genomic information and developing the genetic markers necessary for mapping. 
In the model system Arabidopsis thaliana, the first plant species to have a sequenced 
genome, informative work with QTL mapping of phytochemical defenses was 
developed two decades ago (Chan et al. 2010, 2011). These studies have contributed 
substantially to our understanding of the genetic underpinnings of resistance.

For example, an early study using genetic mapping in A. thaliana to investigate 
the genetic architecture of secondary compounds demonstrated that a relatively 
small number of genetic regions can underlie considerable variation in phytochem-
ical resistance profiles. Glucosinolates are a large group of secondary metabolites 
in Arabidopsis thaliana, with an estimated 7–14 glucosinolates occurring in foliar 
tissue of a particular plant (Kliebenstein et al. 2001a). This allows Arabidopsis to 
generate a large number of possible combinations of glucosinolates in individual 
plants. In a study of the genetic basis of production of 34 different glucosinolates 
in Arabidopsis foliar tissue or seeds, variation at only five QTL resulted in 14 differ-
ent foliar glucosinolate combinations (Kliebenstein et  al. 2001a). Further work 
showed that a single QTL has a major effect in explaining variation in concentra-
tions of a particular class of glucosinolates (Kliebenstein et al. 2001b).

Early genetic mapping studies exploring the overlap between genetic regions 
underlying resistance traits and those affecting herbivore performance also used A. 
thaliana. An investigation of QTL influencing feeding rates of generalist (cabbage 
looper, Trichoplusia ni) and specialist (diamondback moth, Plutella xylostella) herbi-
vores demonstrated that five QTL for generalist insect feeding overlapped with those 
for glucosinolate resistance traits, while a relationship between loci underlying spe-
cialist herbivore feeding performance and glucosinolates was not found (Kliebenstein 
et  al. 2002a). The diamondback moth can detoxify glucosinolates (Ratzka et  al. 
2002), potentially explaining the latter result. Similar results showing overlap between 
QTL underlying glucosinolate profile and those affecting T. ni performance were 
found in the Arabidopsis relative, Boechera stricta (Schranz et al. 2009).

While many specialists can detoxify or otherwise avoid the most detrimental 
effect of secondary compounds, their performance is frequently negatively affected 
by physical resistance traits such as trichomes (Rotter et al. 2018). Trichome den-
sity in Arabidopsis does influence oviposition success of the diamondback moth 
(Handley et  al. 2005), and also provides resistance against herbivory by this 
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specialist (Sletvold et al. 2010). In a field experiment, both glucosinolates and tri-
chomes reduced levels of generalist and specialist herbivore damage (Mauricio and 
Rausher 1997; Mauricio 1998). Subsequently, a single gene was identified that 
influences both trichome density and resistance to chewing insects in a field envi-
ronment (Sato et al. 2019a).

4.6.3	 �Linking Genes to Herbivore Communities

Research linking QTL to resistance traits and to insect performance has most fre-
quently been done in cruciferous herbaceous plants. In contrast, investigations of 
overlap between QTL underlying resistance traits and QTL influencing herbivore 
community composition has most often been done in woody systems.

In European aspen (Populus tremula), geographic variation exists for multiple 
genes involved in defense against herbivory (Bernhardsson and Ingvarsson 2012; 
Bernhardsson et  al. 2013). Several of these genes show evidence of undergoing 
selective sweeps (Bernhardsson and Ingvarsson 2011), in which beneficial mutations 
rise so rapidly in frequency in a population due to natural selection that alleles in 
nearby linked regions are “swept” along. In a GWAS study, multiple single nucleo-
tide polymorphisms (SNPs) were identified that were directly associated with herbi-
vore community metrics such as species abundances for specialist herbivores, species 
richness for generalist herbivores, and species abundances within the galling, min-
ing, and leaf rolling feeding guilds (Bernhardsson et al. 2013). A GWAS study in a 
North American aspen species, quaking aspen (Populus tremuloides) similarly found 
multiple SNPs underlying aspects of insect community composition (Barker et al. 
2019b). This study also found overlap between SNPs associated with variation in 
insect communities and those associated with variation in multiple plant traits, 
demonstrating a mechanistic link for the gene-insect associations. Plant traits 
included the phytochemical resistance traits phenolic glycosides and condensed tan-
nins (Barker et al. 2019b). A previous QTL mapping study in hybrid Populus (P. 
trichocarpa x P. deltoides) also indicates a potential role for phenolic glycosides and 
condensed tannins in influencing herbivore community composition (DeWoody 
et al. 2013). In hybrid aspen, QTL underlying variation in different feeding guilds of 
herbivores contain genes in the shikimate-phenylpropanoid pathway, which pro-
duces phenolic glycosides and condensed tannins (DeWoody et al. 2013).

4.7	 �Use of Genetics to Test Evolutionary Ecology Hypotheses

Techniques such as QTL mapping that identify genes or regions of the genome 
that underlie resistance traits can be used to test evolutionary hypotheses at previ-
ously unprecedented mechanistic levels. Isolating the effects of  single genes or 
genetic regions on a phenotype and/or on herbivores can be done through the use 
of traditional breeding designs (e.g., Lowry et  al. 2019) or gene silencing (e.g., 
Kessler et al. 2004).
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4.7.1	 �Inferring Ecological Consequences from Genetic Data

Experiments designed to link genetics with ecology and/or evolution became more 
common in the early twenty-first century with the advent of the field of ecological 
genomics and a growing realization of the lack of ecological context for model 
organisms in laboratory environments. The primary goal of ecological genomics is 
to identify the genetic and molecular mechanisms underlying natural trait varia-
tion and influencing organismal response to the environment (Feder and Mitchell-
Olds 2003; McKay and Stinchcombe 2008; Ungerer et  al. 2008). Genetic or 
genomic information provides a connection between ecology and phenotypic-
based studies to the evolutionary trajectory of defenses and populations. Ecological 
genetics approaches can be used to elucidate the functional and ecological conse-
quences of genes, with breadth ranging from looking at trade-offs influenced by 
individual QTL or transcriptome studies of patterns of gene expression.

While some studies of natural selection on defense traits were done in natural 
environments, most previous work related to resistance was done with a small 
number of herbivores in a laboratory environment. One early example of the gains 
in knowledge obtained from moving from a lab to an ecological context occurred 
in Nicotiana attenuata (wild tobacco), which has become a model system for the 
study of signaling pathways involved in induced resistance (Baldwin 1998a, b; Xu 
et al. 2018). Three genes playing a major role in plant wound recognition and sig-
naling response were silenced, thus dampening induced response to herbivory 
(Kessler et al. 2004). In the lab, plants with these genes silenced were more suscep-
tible to herbivory by the specialist tobacco hornworm, Manduca sexta. In the field, 
the community composition of the herbivores attacking the plants was highly 
altered, with some novel herbivores showing a preference for the plants, imposing 
heavy damage, and ovipositing (Kessler et al. 2004). This demonstrates that host 
plant selection is not determined only by the constitutive defenses of a plant, but 
also by a plant’s induced response to herbivory. This unique result would have been 
difficult to discover without investigation of the effects of this genetic manipula-
tion in a natural environment.

4.7.2	 �Genetic Correlations and QTL-Level Trade-Offs

QTL-level studies can be used to test predictions of trade-offs between multiple 
aspects of defense, the framework for which was developed based upon phenotypic 
information. Questions within this realm include whether genes for different 
aspects of defense, or genes influencing resistance vs. traits related to life history 
strategy, co-localize. For example, are functional trade-offs that are predicted by 
plant defense hypotheses such as the Resource Allocation Hypothesis and Optimal 
Defense Theory based upon genetic correlations and/or co-localization at the 
genomic level? The presence of genetic correlations implies that the genes that 
underlie the traits are inherited together (Lande 1979; Via and Hawthorne 2002). 
Genetic correlations can be due to pleiotropy, when one gene influences multiple 
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traits, or to linkage disequilibrium, nonrandom associations of alleles at different 
genes affecting two traits (Falconer and Mackay 1996). Linkage disequilibrium is 
most often due to close physical linkage of the genes that underlie the traits (Lynch 
and Walsh 1998). Traditionally, genetic correlations have been estimated by assess-
ing phenotypes of related individuals, and thus have not always been practical in 
studies of plant defense in non-model species. More recently, statistical methods 
have been developed for human data that allow genetic correlations to be calcu-
lated in very large groups of unrelated individuals based on genomic data (Lee 
et al. 2012; Sodini et al. 2018), although these methods are not often used in studies 
of plants. QTL mapping experiments, where QTL for multiple traits co-localize, or 
map to the same region of the genome, generally cannot distinguish whether the 
underlying mechanism for co-localization is pleiotrophy or physical linkage without 
being followed up by fine-mapping.

Knowledge of the extent of genetic correlations between traits can be more 
informative in studies of evolution than are phenotypic correlations. Analogous to 
studies of the evolution or evolutionary potential of a single trait, whereby genetic 
variation for a trait is necessary for evolution of the trait to occur within a popula-
tion, genetic correlations are based upon genetic variance and covariances between 
traits and the rate and direction of their evolution depends on these parameters 
(Lynch and Walsh 1998). While phenotypic and genetic correlations sometimes 
correspond (Roff 1996), in many cases they do not (Willis et al. 1991), thus pheno-
typic correlations are not necessarily reliable substitutions when making evolution-
ary inferences for traits.

With genetic correlations, response to selection on one trait (i.e., changes in 
allele frequencies) will result in changes in other traits that are influenced by the 
same gene/group of genes. Such correlations can facilitate or constrain adaptation 
(Lande 1979; Via and Hawthorne 2005). QTL studies have been very informative 
in the exploration of the evolution of trade-offs in multiple aspects of defense, 
including between constitutive and induced resistance, between resistance and abi-
otic stress tolerance, and between resistance and other life history traits. 
Characterization of the strength and direction of genetic correlations between 
traits and/or the amount of phenotypic variation explained by QTL that co-local-
ize and underlie traits allows inference about the evolutionary trajectory of these 
traits within populations (Conner and Hartl 2004).

Trade-offs between constitutive and induced defense are predicted to occur by 
Optimal Defense Theory, based upon allocation of resources given the probability 
of herbivory. Plant populations that experience consistent herbivory might invest 
more in constitutive defense, while populations that incur more sporadic herbivory 
might invest in induced defense only when necessary (Harvell 1990; Adler and 
Karban 1994; Cipollini et al. 2003). These patterns have been often, but not always, 
supported by phenotypic correlations (Karban and Baldwin 1997; Agrawal 1998). 
Investigation of genetic correlations and whether genetic underpinnings of these 
traits co-localize can help us to answer fundamental evolutionary questions regard-
ing the genetic architecture of complex traits, and how trade-offs evolve.
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Several studies of the genetic architecture of constitutive and induced defense 
have found QTL underlying these traits to co-localize. Kliebenstein et al. (2002b) 
found co-localization of QTLs influencing constitutive and induced glucosinolate 
levels in Arabidopsis thaliana. In contrast to the predictions of ODT, however, the 
genetic correlations between constitutive and induced defenses were positive. As 
predicted by ODT, negative genetic correlations were found between constitutive 
and induced trichome density in monkeyflower (Mimulus guttatus), with co-
localization of some of the QTL underlying these traits (Holeski et al. 2010).

Trade-offs between resistance traits and abiotic stress tolerance have also been 
found to have a genetic basis. In a study of the mechanisms aiding or hindering 
range expansion in the ecological model species Boechera stricta, negative genetic 
correlations and co-localizing QTL were detected between glucosinolate produc-
tion and drought stress tolerance. At the low elevation range boundary for the 
species, both increased levels of glucosinolates and increased drought stress 
tolerance were favored by selection. Thus, the genetic-based trade-off  between 
these two attributes could contribute to limiting the range of the species by not 
allowing for simultaneous increase in resistance and increase in drought stress tol-
erance (Siemens et al. 2009; Olsen et al. 2019).

In monkeyflower, several studies have identified genetic-based trade-offs 
between resistance traits and traits related to life history strategy. In some peren-
nial plants of Mimulus guttatus, an inverted portion of a chromosome (DIV1) 
underlies increases in both phytochemical resistance traits and traits related to 
long-term growth strategy such as plant height, adventitious root production, and 
number of stolons. The annual orientation of this region is associated with rapid 
development to reproduction and reduced phytochemical defense (Lowry et  al. 
2019). Similar trade-offs between rapid development to reproductive maturity and 
allocation to phytochemical defense is found within annual monkeyflower plants 
(Mimulus guttatus). A QTL of relatively large effect underlies a trade-off  between 
phytochemical resistance and developmental rate; plants that have more rapid time 
to reproductive maturity have lower levels of phytochemical defense than plants 
with slower development times (Kooyers et al. 2020).

4.8	 �Gene Expression and Herbivore Resistance

Advances in genomic technology have allowed greater understanding of how 
plants respond to herbivory at the genomic level. While this work is still biased 
towards a relatively small number of model and agricultural species (.  Table 4.2), 
research in species that are closely related to model species have been able to coopt 
genetic tools and molecular genetic resources. Species in the Brassicaceae family 
such as Boechera and Brassica, for example, are often used for study of the genetics 
of plant-herbivore interactions, and this is largely possible due to the use of genetic 
resources developed in Arabidopsis (Mitchell-Olds 2001; Anderson and Mitchell-
Olds 2011). Likewise, experimental use of plants in the Solanum genus has taken 
advantage of the genomic tools developed in tomato and potato relatives (Schmidt 
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et al. 2004). While a great deal of the work in gene expression has taken place in a 
greenhouse or laboratory environment, in the past decade multiple studies examin-
ing gene expression in plants grown in field-based common gardens have been pub-
lished. These latter experiments have provided insight into the relationship between 
gene expression, ecologically-realistic abiotic and biotic environmental conditions, 
and population-level processes.

4.8.1	 �Transcriptome Profiling

Numerous studies have investigated patterns of gene induction and transcriptome 
patterns during and/or after herbivore feeding, along with the ecological effects of 
the induced changes in resistance. Expression profiling, also called transcription 
profiling, tracks the expression of hundreds to thousands of genes on DNA micro-
arrays, whereby specific sequences are attached to a surface of a DNA chip, and 
act as probes to detect gene expression in samples (Bumgarner 2013). The expres-
sion profiles can then be compared in plants replicated across different environ-
mental conditions of interest. In plant-herbivore interactions, this method has 
been used to compare gene expression in response to herbivores from different 

.      . Table 4.2  Genera used in genetic studies of  plant resistance

Plant genus Genome size of representative 
sequenced species

Year genome sequence made publicly 
available for a species in the genus

Arabidopsis 135 Mb 2000

Boechera 227 Mb 2017

Brassica 584 Mb 2011

Eucalyptus 640 Mb 2014

Glycine 1.1 Gb 2008

Ipomoea 750 Mb 2016

Mimulus 430 Mb 2008

Nicotiana 2.6–4.5 Gb 2012

Oryza 430 Mb 2002

Populus 500 Mb 2006

Solanum 840 Mb 2011

Triticum 17 Gb 2018

Zea (corn) 2.4 Gb 2009

This list represents many genera commonly used but is not comprehensive
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feeding guilds (Broekgaarden et al. 2010), generalist versus specialist herbivores 
(Reymond et al. 2004), and plant response to different natural herbivore communi-
ties (Broekgaarden et al. 2010). Plant response to herbivores of different genotypes 
has even been assessed (Zytynska et al. 2016). Transcription profiling has been con-
ducted in a number of species, including Arabidopsis and relatives, sorghum 
(Sorghum bicolor), tobacco (Nicotiana attenuate), rice (Oryza spp.), and tomato 
(Lycopersicon esculentum); this profiling has highlighted the complexity of plant 
response to damage and has provided insight into damage-induced signaling path-
ways. Large-scale differences in results across studies have also demonstrated the 
need for use of more standardized experimental designs (Thompson and Goggin 
2006). Unless genes previously characterized in function have been identified and 
are used, gene expression profiling represents a whole plant response to herbivory 
and thus can include changes in expression in genes underlying direct defenses, 
indirect defenses, and a myriad of physiological changes.

4.8.2	 �Gene Expression Following Herbivore Activity

Transcription profiling has been used to investigate gene expression in response to 
mechanical versus specialist herbivore (Pieres rapae) damage (Reymond et  al. 
2000) and damage by generalist (Spodoptera littoralis) versus specialist (P. rapae) 
chewing herbivores in Arabidopsis thaliana (Reymond et  al. 2004). While gene 
expression was quite different between plants with mechanical vs. specialist dam-
age (Reymond et al. 2000), substantial overlap occurred between genes expressed 
in response to the generalist and specialist caterpillars (Reymond et  al. 2004). 
Another study comparing gene expression in response to two generalist and a spe-
cialist chewing herbivore in tobacco (Nicotiana attenuata) found that the most 
overlap occurred between the two generalists (Heliothis virescens and Spodoptera 
exigua), although over 60% of the genes up- or down-regulated by the specialist 
(Manduca sexta) were similarly expressed following herbivory by the generalists 
(Voelckel and Baldwin 2004).

Studies of gene expression have been used to address evolutionary ecological 
hypotheses regarding induction of plant defenses by generalist versus specialist 
herbivores. For example, a long-standing paradigm in plant-herbivore interactions 
predicts that phytochemical plant defenses will have less of an effect on specialist 
herbivores than on generalists, and that when damaged by generalists versus spe-
cialist herbivores, plant responses will differ (Ali and Agrawal 2012). In the latter 
point, plant responses are both dictated by the plant and manipulated by the her-
bivore (Felton and Eichenseer 1999; Felton and Tumlinson 2008; Erb et al. 2012). 
Phenotypic evidence for differential plant response to generalists versus specialist 
is not consistent (Bowers and Stamp 1993; Agrawal 2000; Ali and Agrawal 2012), 
while evidence for differential plant response to feeding by herbivores of different 
feeding guilds is clearer (Ali and Agrawal 2012).

Patterns of gene expression have generally supported trait-based results in tests 
of this paradigm, showing that feeding guild may have a stronger effect on overall 
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differences in gene expression than does the diet breadth or degree of specialization 
of the herbivore. Analyses of gene expression following feeding by different feed-
ing guilds in Arabidopsis showed limited overlap in the transcriptional response to 
feeding by chewing, cell-content feeding, and phloem-feeding herbivores (the cat-
erpillar Pieris rapae, thrip Frankliniella occidentalis, and aphid Myzus persicae, 
respectively; De Vos et al. 2005). Broekgaarden et al. (2011) show similar results 
from a study of specialist caterpillars (P. rapae) and aphids (Brevicoryne brassicae) 
feeding on wild black mustard (Brassica nigra). Finally, in a study of four chewing 
lepidopteran herbivores and two aphid species, with generalists and specialists 
within each feeding guild, the effects of insect taxon or feeding guild had a sub-
stantially larger effect on patterns of gene expression than did insect diet breadth 
(Bidart-Bouzat and Kliebenstein 2011).

Gene expression data has highlighted at least some of the mechanistic basis for 
genotypic variation in resistance. In the Arabidopsis relative, white cabbage 
(Brassica oleracea), transcription responses to damage by a specialist (Pieres rapae) 
in two cultivars (genotypes) were compared using microarrays developed for 
Arabidopsis (Broekgaarden et al. 2007). The two genotypes differed in resistance as 
measured by P. rapae performance, although with this metric constitutive versus 
induced resistance cannot be disentangled. The two cultivars also differed fairly 
dramatically in transcriptional response, with 44% or more of the genes induced in 
one cultivar not induced in the other (Broekgaarden et al. 2007). Similarly, in a 
field experiment with 19 Arabidopsis accessions and ambient herbivory, more than 
half  of the differences in gene expression in glucosinolate biosynthetic genes was 
among-accession variation (Sato et al. 2019b).

While much gene expression work has been done in a laboratory environment 
with one to three herbivores rather than in a natural context, some investigation of 
the relevance of transcriptional profiling in natural environments has been done. 
One such study elegantly ties herbivore community metrics to patterns of gene 
expression across plant genotypes. In a field study with two Brassica oleracea geno-
types, nine herbivore species were present in similar abundances across the geno-
types (Broekgaarden et al. 2010). Later in the season, one genotype hosted lower 
richness and abundances of both generalist and specialist herbivores than the other 
genotype. Levels of gene expression also differed more substantially between the 
genotypes relative to earlier in the season, with differences in expression levels in 
over 20 genes, including several genes known to play a role in herbivory defense 
(Broekgaarden et al. 2010).

When transcriptional profiling is used in combination with genes with a charac-
terized function, a more comprehensive picture of plant response to herbivory can 
be obtained (He et al. 2020). Transcriptional profiling has been used for genes with 
previously characterized roles in direct and indirect defenses. In cucumber (Cucumis 
sativus), genes related to some direct defenses including phenylpropanoids and ter-
penoids were upregulated in response to spider mites (Tetranychus urticae), while 
genes underlying other direct defense phytochemicals were downregulated. Genes 
involved in the production of terpenoid emissions as an indirect defense were 
upregulated (He et al. 2020).
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4.9	 �Genetic Basis of Indirect Defense

To date, study of the genetic basis of indirect defenses focuses almost exclusively 
on production of plant volatile compounds (Pearse et al. 2020). Levels, as well as 
the composition, of volatile blends emitted after herbivory are different than those 
emitted before herbivory; post-herbivory emissions of herbivory-induced plant 
volatiles (HIPVs) attract predators and parasitoids from multiple insect orders, as 
well as mites, nematodes, and birds (Dicke et al. 2003; McCormick et al. 2012). 
Plant volatiles can be induced by herbivore feeding and/or oviposition on a plant, 
and tend to attract primarily herbivore enemies (Kessler and Baldwin 2001, 2002; 
Poelman et al. 2008; Hilker and Meiners 2010), or egg parasitoids (Hilker et al. 
2002; Hilker and Meiners 2002, 2006), accordingly.

Feeding by herbivores of different types and ages, feeding guilds, and abun-
dances can affect the specific blend of volatiles that are released, and thus the ene-
mies that are cued (McCormick et  al. 2012). Volatiles induced by mechanical 
damage are different than those induced by herbivore feeding (Turlings et al. 1990; 
Baldwin et al. 2001). This could be a result of the differences in rate of tissue lost 
by herbivory vs. mechanical damage (Mithöfer et al. 2005), and/or to the lack of 
salivary cues by the herbivores (Turlings et al. 1990; Felton and Tumlinson 2008).

Research of indirect defenses has focused primarily on elucidating the signal-
transduction pathways underlying plant response. This mechanistic research has 
taken place in model plant species, with genes underlying HIPV response identified 
in Arabidopsis (Van Poecke et al. 2001; Kappers et al. 2005), Populus (Irmisch et al. 
2013; McCormick et al. 2019), tomato (Zhang et al. 2020), lima bean (Arimura 
et al. 2000), and maize (Erb et al. 2015), among others.

The genes underlying multiple aspects of direct and indirect defense have been 
identified in wild tobacco (Nicotiana attenuata; e.g., Dinh et  al. 2013; Xu et  al. 
2020), and many aspects of the ecology of the species are known (Adam et al. 2018). 
However, extensions from the mechanistic genetic basis of HIPVs to plant fitness in 
natural environments to characterize the function of genes through generation of 
genetically altered plants are somewhat rare. One field-based study of HIPVs in 
wild tobacco estimated that they reduced the number of herbivores present by 90%, 
indicating the potential for substantial effects of HIPVs on plant fitness (Kessler 
and Baldwin 2001). Later studies have investigated the evolutionary and ecological 
effects of HIPVs in wild tobacco more directly through the use of genetically mod-
ified plants and have shown substantial effects of HIPVs on plant fitness.

One investigation of the effects of HIPVs on plant fitness in a field environment 
included plants that were genetically modified to have the genes underlying HIPVs 
silenced (Schuman et al. 2012). The specialist tobacco hornworm Manduca sexta 
had a large effect on flower production in the field environment; predation on 
Manduca was increased two-fold in plants that produced HIPVs, and these plants 
had twice as many buds and flowers as those in which HIPVs were silenced 
(Schuman et al. 2012). Another field experiment used wild tobacco plants that were 
genetically altered to produce reduced or enhanced levels of herbivore-induced 
volatiles, with some also having reduced levels of direct defenses (Schuman et al. 

The Genetic Basis of Plant-Herbivore Interactions



80

4

2015). Herbivore abundance was lowest on plants with enhanced levels of 
herbivore-induced volatiles, and these plants also had the lowest mortality rates. 
Enhanced levels of volatile production did not entirely compensate for reduced 
levels of direct defenses, in terms of plant mortality, but plants with enhanced lev-
els of volatile emissions did improve the fitness of plants of other genotypes, when 
planted together (Schuman et al. 2015).

Work in wild tobacco using genetically modified plants has thus shown clear 
effects of variation in HIPV on plant fitness. Future studies investigating the effects 
of genetic variation in HIPV production within natural populations would provide 
more insight into the evolutionary potential of these indirect plant defenses.

Key Points
Genetic and genomic studies of plant-herbivore interactions have contributed sig-
nificantly to our understanding of:

55 the genetic basis of plant resistance to herbivory
55 evolutionary trajectories of resistance traits in natural populations
55 evolutionary and ecological hypotheses for the evolution of resistance
55 signaling pathways that underly plant response to herbivory

?? Question
We have extensive knowledge of the natural history of plant-herbivore interactions 
in some systems, based on a century or more of research. How can genetic work be 
used to complement natural history to inform our understanding of plant-herbivore 
interactions?

�Conclusions
Research in plant-herbivore interactions in the past half-century has shifted from a 
focus on phenotypic variation to an increasingly mechanistic genetic scale. We now 
know that genetic variation in resistance traits is widespread in natural populations. 
Characterizing patterns of genetic variation in traits and how natural selection by 
herbivores acts on these traits has given us a better understanding of evolutionary 
trajectories of resistance in natural populations.

Identification of genes or QTL underlying resistance traits has allowed us to 
test evolutionary and ecological hypotheses regarding the evolution of plant resis-
tance at the level of individual genes or genetic regions, rather than at the level of 
phenotypes. Functional characterization of genes underlying herbivory resistance 
has led to a better understanding of the mechanistic pathways between genes and 
phenotypes.

As the variety of plant species in which genetic-based hypotheses can be tested 
increases, this will enable us to build a more comprehensive view of commonalities 
and differences in the genetic control of resistance. Investigations of gene expression 
and function across a broader array of species and in ecologically realistic environ-
ments will increase our understanding of how the genetic architecture of resistance 
functions and evolves in natural populations.
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Further Reading/Additional Resources
Anderson and Mitchell-Olds (2011) review ecological genomics and plant-herbivore interactions
A recent book chapter by Mijail De-la-Cruz, Sabina Velázquez-Márquez, and Juan Núñez-Farfán 

(2020) provides a complementary review of  genomics work in plant-herbivore interactions
A book chapter by Heidel-Fischer et al. (2014) reviews plant transcriptomic responses to herbivory
A book chapter by Kliebenstein (2014) reviews quantitative genetic studies of  plant resistance
Pearse et al. (2020) review the state of  the field in the evolutionary ecology of  indirect defenses
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