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1  | INTRODUC TION

Identification of the genetic mechanisms of species interactions 
and community composition is a major aim of community genetics. 
To date, studies have determined that different genotypes of plants 
have different communities of associated organisms (e.g., insects and 
endophytes) and that community relatedness is mirrored by the ge‐
netic relatedness among plant genotypes in a common environment 
(Barbour et al., 2016; Kagiya, Yasugi, Kudoh, Nagano, & Utsumi, 2018; 

Keith, Bailey, Lau, & Whitham, 2017; Koricheva & Hayes, 2018). These 
associated communities are shaped by key plant traits, including 
morphology, phenology and phytochemistry (Barbour et al., 2015; 
Barker, Holeski, & Lindroth, 2018; Robinson, Ingvarsson, Jansson, & 
Albrectsen, 2012; Wimp et al., 2007). To date, this research has been 
conducted primarily at the plant genotype level, and thus, the identity 
of the underlying plant genes has remained largely unresolved.

Previous studies that have investigated the genetics of plant 
resistance to insect herbivores have assessed insect‐associated 
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Abstract
Community genetics aims to understand the effects of intraspecific genetic varia‐
tion on community composition and diversity, thereby connecting community ecol‐
ogy with evolutionary biology. Thus far, research has shown that plant genetics can 
underlie variation in the composition of associated communities (e.g., insects, lichen 
and endophytes), and those communities can therefore be considered as extended 
phenotypes. This work, however, has been conducted primarily at the plant genotype 
level and has not identified the key underlying genes. To address this gap, we used 
genome‐wide association mapping with a population of 445 aspen (Populus tremu‐
loides) genets to identify the genes governing variation in plant traits (defence chem‐
istry, bud phenology, leaf morphology, growth) and insect community composition. 
We	found	49	 significant	SNP	associations	 in	13	Populus genes that are correlated 
with	chemical	defence	compounds	and	 insect	community	 traits.	Most	notably,	we	
identified an early nodulin‐like protein that was associated with insect community di‐
versity and the abundance of interacting foundation species (ants and aphids). These 
findings support the concept that particular plant traits are the mechanistic link be‐
tween plant genes and the composition of associated insect communities. In putting 
the “genes” into “genes to ecosystems ecology”, this work enhances understanding 
of the molecular genetic mechanisms that underlie plant–insect associations and the 
consequences thereof for the structure of ecological communities.
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damage, fitness, abundance and diversity traits (Bernhardsson 
et	al.,	2013;	Dewoody	et	al.,	2013;	Rönnberg‐Wästljung,	Ahman,	
Glynn,	&	Widenfalk,	2006;	Thoen	et	al.,	2017;	Zinkgraf,	Meneses,	
Whitham, & Allan, 2016). While many studies have explored the 
genetic	 basis	 of	 resistance	 in	 crops	 (e.g.,	 Tzin	 et	 al.,	 2015)	 and	
Arabidopsis thaliana (e.g., Thoen et al., 2017), few have investi‐
gated the underlying plant genetics of complex insect communi‐
ties	(Bernhardsson	et	al.,	2013;	Dewoody	et	al.,	2013).	Dewoody	
et	al.	(2013)	used	QTL	mapping	to	identify	genetic	regions	associ‐
ated with foliar damage caused by various insect guilds in F2 ped‐
igrees of Populus trichocarpa × deltoides hybrids. Bernhardsson et 
al.	 (2013)	used	association	mapping	to	determine	whether	seven	
defence‐related genes in European aspen (Populus tremula) cor‐
related with insect guilds and species richness. Both studies found 
a	modest	number	of	QTN	(12–14)	with	small‐	to	medium‐sized	ef‐
fects (R2	=	0.03–0.15	per	QTL).

To significantly advance the field of community genetics, 
a broader experimental approach is required. First, research is 
needed at the genomic scale, with fine resolution (e.g., genome‐
wide	association	mapping	[GWAS],	Ingvarsson	&	Street,	2011),	to	
pinpoint causative plant genes and genetic regions that structure 
associated	communities.	Second,	like	the	work	by	Bernhardsson	et	
al.	(2013),	plant	traits	(e.g.,	secondary	metabolites)	that	are	known	
to shape associated communities should be included in analyses to 
identify genes underlying the traits and to assess whether there is 
overlap with genes that underlie community composition. Third, 
more	complex	association	models	(e.g.,	multivariate	GWAS)	should	
be used to better capture the complexity of community traits 
rather than simplifying these metrics to abundance and richness 
values.

Here, we identified genes underlying both ecologically relevant 
tree traits in, and associated insect communities on, trembling aspen 
(Populus tremuloides), using a recently established genetic mapping 

population of 445 aspen genets. We quantified 20 tree traits, in‐
cluding	 size,	 growth,	 foliar	morphology,	 foliar	phenology	and	phy‐
tochemistry, and surveyed herbivorous insect and ant communities. 
We chose herbivorous insects because they interact directly with 
the host tree, and thus should be affected by particular tree traits 
(e.g., defence chemicals) and underlying tree genetics. We also in‐
cluded ant communities, since the ant species in our surveys tended 
aphid populations and had a pronounced effect on the canopy in‐
sect community (Barker et al., 2018; Wimp & Whitham, 2012). We 
then used both univariate and multivariate genome‐wide association 
analyses	with	 a	 data	 set	 of	 over	 170,000	 SNPs	 (single	 nucleotide	
polymorphisms) for each aspen genet to identify the underlying 
genes. We predicted that some of the same loci that shaped tree 
traits would also be associated with the composition of insect com‐
munities. We also predicted that insect species that are closely as‐
sociated with the host tree (e.g., leaf‐galling insects) would be more 
likely to have associations with tree genes than insects that interact 
less closely (e.g., free‐feeding insects and ants).

2  | METHODS

2.1 | Study system

Trembling aspen (P. tremuloides) is the most widely distributed and 
genetically	diverse	tree	species	in	North	America	(Mitton	&	Grant,	
1996). It exhibits little population structure, with evidence of 
only two subpopulations (south‐western and northern, Callahan 
et	al.,	2013)	across	 its	 range.	This	 feature	makes	aspen	 ideal	 for	
genome‐wide association analyses, since population structure 
can mislead results with false‐positive associations (Ingvarsson 
&	 Street,	 2011).	 In	 addition,	 aspen	 is	 a	 foundation	 species	 with	
substantial impacts on dependent communities (Hillstrom, 2009). 
Studies	of	aspen	 (Barker	et	al.,	2018;	Hillstrom,	2009)	and	other	

F I G U R E  1   (a)	Map	of	Wisconsin	that	
displays the origin of the WisAsp aspen 
genets	(white	points,	shown	with	30%	
transparency) and the WisAsp common 
garden (red point). (b) Histogram of 
relatedness values (calculated using 
gemma, derived from a kinship matrix) 
for all pairwise comparisons of the 445 
genets. Low values (0) indicate that the 
pair of genets is completely unrelated, 
whereas higher values (0.25) indicate that 
the pair of genets is more related and have 
a potential sibling relationship
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Populus species (Bangert et al., 2006; Robinson et al., 2012; Wimp, 
Martinsen,	Floate,	Bangert,	&	Whitham,	2005)	have	 linked	plant	
genotypes to unique arthropod communities, and these commu‐
nities have low to high broad‐sense heritabilities (0.09–0.78 H2). 
Finally,	key	tree	traits	(tree	size,	bud	phenology,	extrafloral	nectar‐
ies and secondary chemistry) have been shown to structure insect 
community composition (Bangert et al., 2006; Barker et al., 2018; 
Robinson et al., 2012).

2.2 | WisAsp common garden

We established a genetic mapping population of aspen in 2010 with 
genets collected from throughout Wisconsin (Figure 1, latitude range: 
358	km,	longitude	range:	186	km,	corresponding	to	the	northern	sub‐
population	of	aspen;	Callahan	et	al.,	2013).	The	trees	were	planted	in	
a	 randomized	complete	block	design	with	 four	 replicate	blocks	and	
a	 perimeter	 of	 nonexperimental	 trees	 (to	minimize	 edge	 effects)	 at	
the	University	of	Wisconsin's	Arlington	Agricultural	Research	Station	
(Figure	S2).	We	originally	planted	392	genets	 (N = 1,568); however, 
due to vole damage many trees died in both 2010 (N	=	399)	and	2011	
(N	=	334).	We	thus	replanted	some	of	our	original	genets	and	also	col‐
lected and planted new genets for a total of 445 aspen genets with 
3.56	replicates	on	average	(±1.80	SD, N = 1,824 in total). The garden 
was	planted	in	a	former	grass–alfalfa	field	with	Joy	silt	loam	soil	(Staff,	
NRCS,	&	USDA,	2012).	Trees	were	planted	with	2.5	m	×	2.5	m	spac‐
ing. The entire garden was surrounded by a 2.4‐m‐tall electric fence 
to exclude deer, and the site was mowed and maintained as needed. 
The	trees	were	4–5	years	old	at	the	time	of	data	collection	(75%	of	the	
trees were at least 1.6 and 2.6 m tall in 2014 and 2015, respectively).

2.3 | Tree trait surveys

We measured ecologically relevant tree traits, including growth 
(measured 2012–2015), foliar morphology (2014–2015), phenology 
(2014–2015) and defence (phytochemistry 2014–2015, extrafloral 
nectaries 2014). To survey growth, we measured tree volume after 
each growing season. We recorded basal diameter (10 cm above 
ground level) and height (ground level to the base of the apical bud). 
Volume was calculated as diameter2 × height, a metric that correlates 
well	with	biomass	(Stevens,	Waller,	&	Lindroth,	2007).	We	calculated	
absolute growth as log10(treevolumefinal/treevolumeinitial) and rela‐
tive growth as ln(treevolumefinal)	−	ln(treevolumeinitial), respectively.

To	measure	foliar	morphology,	we	haphazardly	collected	20–30	
leaves from each tree in late June/early July and scanned them on 
a	LICOR	flatbed	scanner	(Version	3100).	The	leaves	were	then	vac‐
uum‐dried and weighed. We calculated both average individual leaf 
area and specific leaf area (leafarea [cm2]/mass	[g]).

To assess phenology, we recorded timing of bud break and bud 
set using 5‐point and 2‐point scales, respectively. The bud break 
scale was adapted from Robinson et al. (2012) and varied from (1) 
dormant	buds	to	(3)	broken	buds	to	(5)	leaves	that	were	flushed	and	
completely	unrolled	but	not	yet	fully	expanded	(Figure	S1).	The	bud	

set scale measured whether the buds were still growing (0) or set and 
dormant	(1).	We	examined	each	tree	every	2–3	days	for	each	survey.	
For bud break, we measured the most advanced bud on the tree, fol‐
lowing Project BudBurst (http://budbu rst.org/) protocols, while for 
bud set we measured the terminal stem bud only. In addition to mea‐
suring date of bud break and bud set, we also calculated the length 
of the growing season for each tree in number of days as Julian bud 
set	date	−	Julian	bud	break	date.

To quantify foliar defences and nitrogen levels, we collected 
leaves in both late June/early July (same leaves as were used for 
foliar morphology assessment) and August to analyse phytochem‐
istry and EFN density, respectively. For the June/July collection, 
we	pulverized	 the	dried	and	weighed	 leaves	 to	a	 fine	powder	by	
ball	milling	 and	 stored	 them	 at	 −20°C.	We	quantified	 foliar	 con‐
centrations of nitrogen, condensed tannins and salicinoid phenolic 
glycosides	using	near‐infrared	reflectance	spectroscopy	(NIRS;	see	
Table	S1	for	information	on	the	chemical	prediction	models;	FOSS	
NIRSystems),	as	described	by	Rubert‐Nason	et	al.	(2013).	Spectra	
were collected from dry, powdered leaf samples packed into 5‐
cm ring cup cells. After exclusion of outlier spectra with a global 
Mahalanobis	distance	(MD)	>3,	we	developed	calibrations	relating	
NIR spectral bands (1,100–2,500 nm) to phytochemical parame‐
ters	using	a	subset	of	samples	(~150–400)	chosen	by	the	SELECT	
algorithm (winisi version 1.50 software Foss‐Tecator; Infrasoft 
International	 LLC)	 with	 a	 neighbourhood	 MD	 of	 1.0	 (Shenk	 &	
Westerhaus 1991a,1991b). We acquired nitrogen reference values 
by combustion gas chromatography on a Thermo Flash EA1112 el‐
emental	analyzer	 (Thermo	Finnigan),	as	described	 in	Sollins	et	al.	
(1999). Condensed tannin reference values were measured colo‐
rimetrically (550 nm) relative to purified P. tremuloides condensed 
tannin material (Hagerman & Butler, 1980), after extraction of fo‐
liage	into	70:30	v/v	acetone/water	and	reaction	with	Fe(III)	under	
acidic conditions (Porter, Hrstich, & Chan, 1986). Phenolic glyco‐
side reference values were determined by extraction of foliage into 
methanol, followed by separation of extracts by ultra‐high‐perfor‐
mance liquid chromatography and quantification by negative elec‐
trospray	ionization	single	quadrupole	mass	spectrometry	(Waters	
ACQUITY	 iClass	 UPLC/MS	 system),	 following	 methods	 adapted	
from	Abreu,	Ahnlund,	Moritz,	and	Albrectsen	 (2011)	and	Rubert‐
Nason, Hedman, Holeski, and Lindroth (2014), Rubert‐Nason, 
Keefover‐Ring,	 and	 Lindroth	 (2018).	 Samples	 with	 anomalous	
spectra (N	~	50,	identified	by	MD	>3)	were	also	analysed	by	these	
reference methods. We developed partial least squares regression 
models relating NIR spectra to phytochemical reference values 
(Table	S1)	and	applied	these	models	to	predict	the	phytochemistry	
in all 1,824 leaf samples from their corresponding NIR spectra.

To determine extrafloral nectary (EFN) density (number per leaf), 
we	haphazardly	collected	12	leaves	from	each	tree	in	August	2014	
and stored them on ice in the field. We then digitally scanned the 
upper surface of each leaf and counted the number of EFNs that 
were present on each leaf in the scanned images. EFNs in aspen are 
located at the leaf/petiole juncture.
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Trait variation, broad‐sense heritability estimates and relation‐
ships (genetic correlations) are all reported by Barker et al. (2018).

2.4 | Insect community surveys

We visually surveyed herbivorous insect and ant species on the orig‐
inally planted trees (N	=	989,	328	aspen	genets,	all	planted	in	2010)	
in	mid‐July	to	early	August	2014–15.	We	standardized	our	surveys	
by	time	to	account	for	variation	in	tree	canopy	sizes.	To	ensure	that	
our methods captured the complete insect community, we first con‐
structed rarefaction curves of number of insect species observed 
per	time	interval	(30‐s	intervals	with	a	total	of	20	min	surveyed	for	
each tree) for 20 trees distributed throughout the garden (early 
July 2014 and 2015). The rarefaction curves revealed that species 
richness	saturated	at	approximately	3	min	of	survey	time	for	small	
trees	(<1.5	m	tall)	and	6	min	for	large	trees	(>2.5	m	tall).	We	there‐
fore surveyed each tree for at least three minutes, and larger trees 
were	surveyed	for	additional	time	units	(3‐min	increments).	We	then	
standardized	the	insect	counts	by	minutes	surveyed	(e.g.,	number	of	
insects per species per minute). We stopped the survey time to col‐
lect, identify and record insects.

In 2014, we surveyed the entire tree. In 2015, due to increased 
tree	size,	we	divided	the	canopy	into	lower,	middle	and	upper	sec‐
tions and surveyed each for the same interval of time. We limited the 
maximum time interval to 4 min (12 min of survey time for a tree), 
which allowed us to survey a large subset of the canopy, but not 
necessarily the entire canopy. We surveyed the insect communities 
from	8:30	a.m.	 to	4	p.m.	each	day,	and	we	conducted	the	surveys	
only	on	days	with	fine	weather	(25.6°C	±	7.1	average	maximum	tem‐
perature,	2.4	m/s	±	1.2	average	wind	speed,	sunny	to	partly	cloudy).

One author (H.L. Barker) trained a team of 6–7 surveyors for each 
insect survey (2014–15) and was present each day of the survey to 
address insect identification questions. Insects were identified using 
field guides and keys, and specimens were collected as needed for 
further identification in the laboratory. All common insects were 
identified to species and rare insects to morphospecies (family level). 
We also surveyed insect‐inflicted damage, including leaf mines, leaf 
and petiole galls, and leaf rolls and tents. Vouchers of common in‐
sect	species	are	preserved	in	the	UW‐Madison	Wisconsin	Research	
Insect Collection, and H.L. Barker has provided a website (https ://
aspen insec ts.wordp ress.com/) that displays information (life his‐
tory, key identification features, etc.) for the common insect species 
found at WisAsp.

Insect community variation, broad‐sense heritability estimates 
and insect relationships (genetic correlations) are all reported by 
Barker et al. (2018).

2.5 | Genetic analyses

Foliar DNA was extracted from one ramet in each genet (leaves 
were	collected	in	June	2012–14	and	freeze‐dried	prior	to	extrac‐
tion). Probes (N = 65,000, 120 bp in length) were designed by 

Rapid	Genomics	and	Nathaniel	Street	(Umeå	Plant	Science	Center)	
to align to each gene (exome capture) from the P. tremula genome 
assembly version 1.1, which contains 9,789 gene‐bearing scaffolds 
and	36,322	gene	models	(Lin	et	al.,	2018;	Sjödin,	Street,	Sandberg,	
Gustafsson,	&	Jansson,	2009).	These	probes	were	then	tested	on	
a population of 24 Populus genets to identify probes that were 
suitable for sequencing (e.g., where sequencing reads mapped 
to	a	unique	genomic	 region).	This	 test	 resulted	 in	45,934	probes	
from	5,478	scaffolds	and	located	in	20,483	gene	models,	with	an	
average	of	2.3	probes/gene	for	sequencing.	Extracted	DNA	from	
all	 434	 genets	was	 then	 sent	 to	Rapid	Genomics	 for	 paired‐end	
sequencing	 (2	×	100	bp)	on	an	 Illumina	HiSeq	2000	with	a	mini‐
mum sequencing depth of 15× per sample. Based on technical rep‐
licates,	the	sequencing	error	rate	was	estimated	to	be	0.2%.	The	
raw sequencing reads were mapped to the P. tremula version 1.1 
genome assembly (Lin et al., 2018) using bwa‐mem version 0.7.12 
(Li & Durbin, 2009) and sorted with samtools version 1.2 (Li et 
al., 2009). Optical duplicates were marked using picard version 
1.127 (http://broad insti tute.github.io/picar d/). Local realignments 
around indels and per individual genotyping (HaplotypeCaller in 
gVCF mode) were performed with gatk	 version	 3.4‐46	 (Van	 der	
Auwera	et	al.,	2013;	DePristo	et	al.,	2011;	Mckenna	et	al.,	2010)	
with a diploid ploidy setting and otherwise default settings. 
Individual g.vcf files were combined into batches of ~200 samples 
using gatk	CombineGVCFs	to	hierarchically	merge	them	into	a	sin‐
gle gVCF. Finally, a joint call over all samples was conducted using 
gatk	GenotypeGVCFs	with	a	standard	emit	confidence	of	10	and	a	
standard call confidence of 20.

A subset of genets (N = 11) had been sequenced previously with 
whole‐genome	 sequencing	 (for	 complete	 details,	 see	Wang,	 Street,	
Scofield,	&	Ingvarsson,	2016).	Single	nucleotide	polymorphisms	from	
these	11	genets	were	merged	with	SNPs	from	probe	sequencing	(434	
genets) and filtered for genotype and sample quality metrics using VCF 
and	BCFtools	 (Danecek	et	al.,	2011,	see	full	SNP	filtering	pipeline	 in	
Table	S2).	After	the	SNPs	were	filtered,	missing	genotype	information	
was	imputed	using	LinkImpute	(Money	et	al.,	2015).	This	SNP	filtering	
pipeline	resulted	in	a	data	set	of	173,520	SNPs	distributed	across	5,332	
scaffolds	and	20,483	genes	with	eight	SNPs	per	gene	on	average.

Finally, seven genets were removed after pruning full‐sibs from 
our	data	set	prior	to	GWA	analyses.	After	full‐sib	removal,	genetic	
relatedness among the remaining individuals in the WisAsp pop‐
ulation	 was	 extremely	 low,	 with	 a	 mean	 of	 −0.002	 (±0.007	 SD, 
Figure 1).

2.6 | Statistical methods

Several	factors	can	influence	the	success	of	genome‐wide	associa‐
tion	(GWA)	analyses	to	detect	significant	genes	underlying	traits	of	
interest	(Ingvarsson	&	Street,	2011),	including	measurement	error	
and	 population	 structure.	 Measurement	 error	 can	 bias	 the	 trait	
data,	impacting	the	ability	to	find	SNP	associations,	whereas	under‐
lying	genetic	structure	can	 lead	to	the	detection	of	spurious	SNP	
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associations. To deal with potential biases, we first assessed struc‐
ture within the WisAsp population using the multilocus approach, 
Admixture (Alexander, Novembre, & Lange, 2009). Following rec‐
ommendations	 of	 the	Admixture	manual,	 the	 filtered	 SNPs	were	
first pruned by linkage disequilibrium before analyses (pairs of 
SNPs	 within	 a	 50‐bp	 window	 were	 pruned	 if	 they	 exhibited	 an	
r2	 value	 >0.2	 using	 plink),	 resulting	 in	 139,338	 SNPs.	 This	 set	 of	
SNPs	was	then	analysed	with	various	population	structures	(K = 1 
through 5) and cross‐validation to identify the number of popula‐
tions that best explain variation in allele frequencies among genets.

We	 then	 performed	 both	 univariate	 and	 multivariate	 GWA	
analyses	with	 the	173,520	SNP	data	 set	 to	 identify	 genomic	 re‐
gions in aspen that are associated with phenotypic traits (i.e., phe‐
nology, growth, leaf morphology, phytochemistry and extrafloral 
nectaries) and insect populations (i.e., presence or abundance of 
particular species), families, guilds and community metrics (i.e., 
species richness, abundance and nonmetric multidimensional scal‐
ing	 [NMDS]	 axes	 for	 Bray–Curtis	 community	 dissimilarity	matri‐
ces;	 for	 complete	 list	 of	 traits,	 see	 Table	 S3).	We	 assessed	 both	
the presence/absence and abundance of various insect species 
and groups (families, guilds) to see whether the same or differ‐
ence	SNPs	are	associated	with	these	metrics.	We	first	regressed	
each trait and metric (xjklm, e.g., species richness) on covariates, 
including experimental block (bj) and year (yj) in which the data 
were collected (both as fixed effects) and genet (gl, as a random 
effect)	using	lme4	in	R	(Bates,	Maechler,	Bolker,	&	Walker,	2015;	
see below). The grand mean is u, and ejklm is the error. To best meet 
the assumptions of the linear mixed models, each trait and met‐
ric (xjklm)	was	 boxcox‐transformed	 using	 the	MASS	 package	 in	 R	
(Venables & Ripley, 2002). From these models, we extracted the 
best linear unbiased predictors (BLUP) for each genet and rank‐
transformed	these	values	for	GWA	analyses	(Goh	&	Yap,	2009).

To both identify gene associations and conduct sensitivity anal‐
ysis	for	our	GWAS	models,	we	used	two	statistical	packages:	plink 
version 1.9 (Purcell et al., 2007) for both univariate and multivariate 
traits and genome‐wide efficient mixed model association (gemma 
version	0.96,	Zhou	&	Stephens,	2012)	for	univariate	traits	 (results	
shown in supplemental data). plink uses a simple linear regression 
without corrections for relatedness among individuals, while gemma 
uses a compressed mixed linear model (Zhang et al., 2010), which 
controls for relatedness among individuals with a centred kinship 
matrix. Kinship does not appear to be an important factor for our 
WisAsp population, as suggested by the low relatedness of individ‐
uals after removal of full‐sibs. Therefore, inclusion of a kinship ma‐
trix	in	the	GWA	analyses	had	little	effect	on	the	results	(90%	of	the	
significant	associations	remained,	Table	S4).	We	also	did	not	include	
any covariates for population structure, since Admixture results in‐
dicated that our sample population is panmictic (Figure 1). For data 
analyses,	we	used	SNPs	with	 a	minor	 allele	 frequency	of	 at	 least	
0.05 and we corrected for multiple testing using a false discovery 
rate (FDR) of 0.10 (which is similar to previous FDR cut‐off values 

for	Salicaceae	GWAS	studies,	e.g.,	Hallingbäck	et	al.,	2016)	for	each	
GWAS	model	calculated	with	the	qvalue	package	in	R	(Bass,	Storey,	
Dabney, & Robinson, 2015). Data from this manuscript can be found 
in the Data Dryad Repository (Barker et al., 2019).

To further elucidate the function of particular genetic regions 
and the mechanism by which they may influence insects, we com‐
pared significant associations with the annotated P. trichocarpa 
genome	version	3.0	 (Tuskan	et	 al.,	 2006),	P. tremuloides genome 
version 1.1 (Lin et al., 2018) and A. thaliana genome TAIR10 
(Swarbreck	 et	 al.,	 2007)	 using	 the	 Populus	 Genome	 Integrative	
Explorer (popgenie,	Sjödin	et	al.,	2009).	To	determine	whether	par‐
ticular tree traits were important in structuring insect communi‐
ties,	we	included	various	standardized	tree	traits	as	covariates	in	
the	insect	community	GWA	analyses	in	plink. If the significant in‐
sect‐associated	SNPs	disappeared	with	inclusion	of	the	tree	trait	
covariates, we inferred that these tree traits were important in 
shaping	the	SNP‐related	variation	in	the	insect	phenotype.

To link gene functions, products and processes to associated 
traits, we conducted gene set enrichment analysis using the ge‐
neric	gene	ontology	mapper	(http://go.princ	eton.edu/cgi‐bin/GOTer	
mMapper;	Boyle	et	al.,	2004;	Harris	et	al.,	2004),	including	the	top	
0.1%	most	significant	SNPs	 (N	=	174)	 from	each	GWA	test.	These	
gene sets were compared to the background set of genes that were 
included in our probe set (based on Arabidopsis homologs), and only 
unique gene names were used to control for differences in gene 
size	 and	 the	 number	 of	 SNPs/gene.	 These	 tests	 were	 run	 with	 a	
Bonferroni p‐value cut‐off of 0.10.

3  | RESULTS

Of	79	GWA	analyses	conducted	for	the	various	tree	and	insect	traits,	
we identified significant associations for 15 of these traits (Table 1 and 
Table	S3).	Forty	nine	SNPs	(five	synonymous	and	27	nonsynonymous	
and	 17	 noncoding)	 from	 13	 different	 genes	 were	 identified,	 which	
were distributed across eight chromosomes (based on alignment to 
P. trichocarpa	version	3.0	genome).	 Individual	SNPs	explained	5.7%–
8.4%	of	the	phenotypic	variation	for	the	associated	trait	(R2 values in 
Table	1).	Of	the	unique	associated	SNPs,	nine	were	3′	UTR	or	intron	
variants that likely influence gene expression, four were missense mu‐
tations that alter the amino acid sequence of the affected gene and 
two were located in upstream or downstream regions (within 2 kb) 
and	could	also	affect	gene	expression.	Many	of	the	genes	harbouring	
significant	SNPs	are	involved	in	modulating	gene	expression,	protein	
modification or the movement of resources in and out of cells. In addi‐
tion, several of the identified genes are known to be regulated by plant 
hormones (jasmonic acid, abscisic acid, brassinosteroids, ethylene).

3.1 | SNPs associated with tree trait variation

Of	 the	20	 univariate	GWA	 tests	 for	 tree	 traits,	 three	 resulted	 in	
significant associations. These associations were for levels of 
tremulacin, phenolic glycosides (combined levels of tremulacin 

xjklm=u+bj+yk+gl+ejklm
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and salicortin) and total defence phytochemistry (combined lev‐
els of tremulacin, salicortin and condensed tannins, Table 1). Two 
SNPs	 in	Potra003979g23949	 that	 encode	 for	 an	ASC1‐like	 (Cyp1	
Absence	 of	 growth	 Suppressor)	 protein	 were	 identified	 in	 GWA	
analyses for both tremulacin and phenolic glycosides. The associ‐
ated	genes	accounted	for	5.9%,	5.9%	and	5.7%	of	the	variation	in	
tremulacin, phenolic glycosides and total defence phytochemistry, 
respectively.	No	SNPs	were	identified	for	tree	growth/size	metrics,	
bud phenology, leaf morphology, foliar nitrogen and the density of 
extrafloral	nectaries	(EFN).	Multivariate	GWA	analysis	of	uncorre‐
lated (r < 0.70) tree traits (i.e., relative and absolute growth, specific 
leaf area, individual leaf area, EFN density, growing season length 
and levels of condensed tannins, phenolic glycosides and nitrogen) 
also	resulted	in	no	significant	SNPs.

Of the gene set enrichment tests we performed for the 20 tree 
traits, eight exhibited significantly enriched gene ontology terms, in‐
cluding	variation	in	tree	size/growth	metrics	(e.g.,	spring	volume	and	
basal area increment), specific leaf area and EFN density (Table 2). 
Many	of	 the	 tree	size/growth	metrics	were	enriched	 for	genes	 in‐
volved in response to misfolded proteins, specific leaf area was en‐
riched for genes involved in defence (immune) response and EFN 
density	was	enriched	for	genes	involved	in	glyceraldehyde‐3‐phos‐
phate metabolism.

3.2 | SNPs associated with insect variation

We	 identified	 significant	 associations	 in	 our	 GWA	 analyses	 for	
10 out of the 47 univariate insect traits. These associations were 
for variation in the incidence of Ecteodemia populella (petiole‐
galling moth), Phyllonorycter tremuloidiella (blotch mining moth), 
Clostera albosigma (leaf‐rolling moth), Cecidomyiidae (leaf‐roll‐
ing flies) and Lasius neoniger (most common ant species), and the 
abundance of C. albosigma, Choristoneura rosaceana (leaf‐rolling 
moth), Tortricidae (leaf‐rolling moths) and L. neoniger (Table 1). 
The	 significantly	 associated	 genes	 accounted	 for	 7.4%–22.6%	of	
the total variation for the insect traits (summing across all genes 
identified for each insect trait). When aphid incidence (BLUP) was 
added	as	 a	 covariate	within	 the	GWAS	model,	 all	 significant	 ant	
incidence	 and	 abundance	 of	 SNP	 associations	 remained,	 except	
for Potra002557g19270	 (Table	 1).	 No	 SNPs	 were	 identified	 for	
free‐feeding insects, leaf‐galling flies, several leaf‐mining moth 
species and insect community metrics (i.e., abundance, richness 
and	Shannon	index,	Table	S3).

To further explore the importance of particular tree traits to 
insect	phenotypes,	we	conducted	GWA	analyses	with	those	traits	
incorporated	 as	 covariates.	 Loss	 of	 significant	 SNP	 associations	
would indicate that the tree trait was important in (directly or in‐
directly) shaping the gene–insect relationship. Including tree trait 
covariates	in	the	GWA	models	made	many	of	these	significant	in‐
sect	associations	disappear	(Table	3).	In	particular,	individual	leaf	
area,	 defence	 phytochemistry	 and	 tree	 size/growth	 traits	 elimi‐
nated all of the significant associations for particular leaf‐modi‐
fying insects. In addition, significant associations for leaf‐rolling 

insect species disappeared when bud phenology was included in 
the analysis. No tree trait covariate could completely eliminate 
the	 12	 significant	 SNPs	 for	 L. neoniger abundance or incidence, 
but inclusion of either individual (tremulacin and salicortin) or 
combined levels of phenolic glycosides made three to four of 
the	SNPs	(found	in	Potra002557g19270 and Potra003286g21239) 
insignificant.

We identified significant associations for two out of nine 
multivariate insect traits. These associations were for nonmet‐
ric	 multidimensional	 scaling	 (NMDS)	 axes	 for	 variation	 in	 both	
the abundance and presence/absence of common insect species 
(Figure 2). Both multivariate traits were associated with the same 
gene, Potra001060g09097.	The	significant	SNPs	had	variable	effects	
on the different components of the trait, with coefficients ranging 
from	−0.72	to	0.82	(Figure	2c).	Specifically,	aspen	with	the	C	allele	at	
these	SNP	sites	had	a	more	diverse	insect	community	(all	common	
insects were more often present on these trees; Figure 2b) that was 
dominated by a few very abundant species (Harmandia sp., aphids 
and aphid‐tending ants; Figure 2a).

Of the 58 gene set enrichment tests we performed for insect 
phenotypes, 14 exhibited significantly enriched gene ontology terms 
(Table	 2).	 Several	 of	 the	 enriched	 gene	 sets	were	 associated	with	
leaf‐galling and leaf‐rolling insects and multivariate insect traits. The 
enriched gene ontology terms included biosynthesis of an anthocy‐
anin‐containing compound, response to mechanical stimulus, cell 
wall biogenesis (notably for a leaf‐galling insect species), γ‐amino‐
butyric	acid	(GABA)	transport	and	hormone	biosynthesis/regulation	
(Table 2).

4  | DISCUSSION

Community genetics research has highlighted the importance of 
plant intraspecific variation in structuring associated communities 
(Barbour et al., 2016; Kagiya et al., 2018; Keith et al., 2017; Koricheva 
&	Hayes,	2018;	Schweitzer	et	al.,	2008).	That	work,	however,	has	
focused primarily at the plant genotype level, and thus, the identity 
of the causative genes remains largely unresolved. Previous studies 
have identified a limited set of Populus genes associated with in‐
sect	damage	(e.g.,	mines,	galls	and	herbivory;	Dewoody	et	al.,	2013,	
Zinkgraf et al., 2016) and insect community metrics (e.g., abundance 
and	 richness;	 Bernhardsson	 et	 al.,	 2013).	 Our	 research	 advances	
the discipline by identifying both genes and gene functions that un‐
derlie ecologically relevant tree traits and insect communities, and 
exploring relationships between insect‐associated genes and tree 
traits.	Most	notably,	our	research	identified	a	gene	that	is	involved	
in	controlling	a	complex	community	trait	(e.g.,	NMDS	axes),	which	to	
our knowledge is the first of its kind. Our findings also reveal several 
new genes associated with variation in defence compounds, includ‐
ing salicinoid phenolic glycosides. In addition, we identified ten new 
associations for variation in the abundance and incidence of leaf‐
modifying insects and ants. Third, our results indicate that the ob‐
served effects of many of the insect‐associated genes are explained 
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by variation in tree traits, including phytochemistry, individual leaf 
area,	timing	of	bud	break	and	tree	size.	Finally,	we	identified	gene	
functions	and	processes	that	are	associated	with	tree	size,	growth	
and leaf morphology, and leaf‐galling, leaf‐rolling and free‐feeding 
insects, ants and insect community composition.

4.1 | Genes underlying tree traits

Our phytochemical traits had high heritability (H2	 >	 0.6),	 which	
likely explains why we were able to identify some of the underly‐
ing genes (Beavis, 1994). Both tremulacin and total phenolic glyco‐
sides (combined tremulacin and salicortin levels) were associated 
with	an	ASC1‐like	protein,	which	is	involved	in	protein	translation	
and	potential	regulation	by	abscisic	acid	(Guo	et	al.,	2011).	 In	ad‐
dition, total defence phytochemistry (combined condensed tan‐
nin and phenolic glycoside levels) was associated with a ribosomal 
protein (Potra007960g26067) that has a physical relationship with 
a syntaxin protein (SYP121). This syntaxin protein is regulated by 
various hormones, including jasmonic acid, abscisic acid and sali‐
cylic acid, and the protein is involved in programmed cell death and 
defence response to pathogens. Thus, both these newly identified 
defence‐related genes are involved in altering gene expression and 
are regulated by plant hormones. These findings shed important 
light on the phytochemical pathway responsible for the produc‐
tion of salicinoids, which remains largely unresolved (Boeckler, 
Gershenzon,	&	Unsicker,	2011;	Bresadola	et	al.,	2019;	Woolbright	
et al., 2018; J. Zhang et al., 2018).

In addition to identifying specific genes showing significant asso‐
ciations with trait variation, we also observed an enrichment of gene 
functions	 in	 the	 top	0.1%	of	 all	 SNPs.	 Tree	 growth	 and	 size	 traits	
were enriched for cellular response to misfolded proteins, which is 
essentially a response to environmental stress (e.g., heat, cold and 
UV;	Nakajima	&	Suzuki,	2013).	Specific	leaf	area	was	enriched	for	de‐
fence (“immune”) response, and the density of extrafloral nectaries 
was	enriched	for	glyceraldehyde‐3‐phosphate	metabolism,	which	is	
involved in glycolysis.

4.2 | Genes underlying insect communities

We predicted that insects (e.g., gallers) with the closest associations 
with the host tree would have more genetic correlations than insects 
(e.g., free feeders and ants) that are not closely associated. Our find‐
ings support this prediction in that leaf‐galling, leaf‐mining and leaf‐
rolling insects were associated with aspen genes, while free‐feeding 
insects had no significant genetic associations. However, aphid‐
tending	ants	had	several	SNP	associations	in	three	different	genes.	
Those results indicate that insects in higher trophic levels may be 
influenced by plant genetics, and are similar to the findings of Wimp 
et al. (2005). Of course, our results derive from a single experimental 
garden; insect communities and gene–insect associations may vary 
in natural aspen habitats.

Upon insect herbivory, plants experience damage‐induced ion 
imbalances, which lead to differing cell membrane potentials, cal‐
cium	 signalling	 and	 oxidative	 stress	 (Maffei,	 Mithöfer,	 &	 Boland,	
2007). These events alter kinase and phytohormone activity, which 
then influences gene expression (e.g., altering the ratio of JAZ to 
DELLA proteins which can activate or suppress growth‐promoting 
genes,	Maffei	et	al.,	2007).	Our	insect	community	GWAS	and	gene	
ontology analyses revealed several candidate genes with functions 
that are consistent with this series of plant–insect events.

First, variation in Tenthredinidae sawflies (primarily leaf‐folding 
Phyllocolpa sp.) was associated with genes enriched for sequestering 
iron ions (that have also been shown to respond to reactive oxygen 
species; Ravet et al., 2009) possibly due to damage‐induced ion imbal‐
ances.	Second,	variation	in	leaf	blotch	miner	(P. tremuloidiella) incidence 
was correlated with a vesicle transport protein (Potra000892g07232), 
which is physically located near a calmodulin‐binding NAC protein 
(NTL9) and may influence calcium signalling. Third, variation in ant 
(L. neoniger) incidence and abundance was related to a tocopherol gene 
(Potra002557g19270), which responds to oxidative stress (Porfirova, 
Bergmuller, Tropf, Lemke, & Dormann, 2002). Fourth, variation in in‐
sects (incidence and composition) was related to genes involved in plant 
hormone regulation. For instance, petiole galler (E. populella) incidence 
was related to an abscisic acid receptor (Potra001062g09110), and 
insect community composition was enriched for gene ontology terms 
involved in hormone regulation. Fifth, both petiole gallers and ants 
were associated with genes involved in modifying expression of other 
genes, including Potra001062g09111 (transcriptional silencing via DNA 
methylation), Potra003266g21171 (mRNA splicing factor that responds 
to	biotic	stress,	Shang,	Cao,	&	Ma,	2017)	and	AT2G40435 (A. thaliana 
homolog,	transcription	factor	SCREAM‐like	protein	that	 is	 involved	in	
response	to	environmental	stress,	Liu,	Srivastava,	Che,	&	Howell,	2007).

We	 identified	 both	 enriched	 gene	 functions	 and	 SNPs	 asso‐
ciated with leaf‐galling insects. Nabity, Haus, Berenbaum, and 
DeLucia	(2013)	compared	gene	expression	patterns	in	leaf	gall	tissue	
(Daktulosphaira vitifoliae galls on grape leaves) to those of regular 
leaf tissue. They revealed that leaf galls had upregulated the phenyl‐
propanoid pathway, increased anthocyanin production and cell wall 
biogenesis, changed the expression of glycolysis/cellular respiration 
and downregulated the Calvin cycle. These findings are consistent 
with our gene enrichment analysis; genes associated with leaf‐galling 
insects were enriched for flavonoid and anthocyanin biosynthesis, 
cell wall biogenesis, cellular respiration and the tricarboxylic acid 
cycle. Also, both the Harmandia leaf galls and E. populella petiole 
galls on our trees were strongly coloured with red/purple pigment, 
suggesting the presence of anthocyanins. In addition, we identified 
an apoptosis‐inducing factor, Potra002833g20082, that was associ‐
ated with Cecidomyiidae (leaf‐galling Harmandia flies and leaf‐rolling 
midges), which may confer resistance to gall formation.

We	 also	 identified	 both	 enriched	 gene	 functions	 and	 SNPs	
associated with leaf‐rolling insects. Variation in leaf‐rolling in‐
sect (Tortricidae) abundance was related to genes involved in 
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mechanical stimulus response and defence. For example, variation 
in rustylined leaftiers (C. albosigma, Notodontidae) was correlated 
with a glycerol kinase (A. thaliana homolog, AT4G38225), which is 
involved	in	glycolysis.	Glycolysis	produces	precursors	for	the	shi‐
kimic	acid	pathway,	which	synthesizes	secondary	plant	compounds	
such as condensed tannins and phenolic glycosides. In addition, 
variation in obliquebanded leafroller (C. rosaceana, Tortricidae) 
abundance was associated with NOXY2 (NONRESPONDING TO 
OXYLIPINS 2, AT5G11630), a salicylic acid‐responsive gene that has 
been shown to play a role in defence against bacterial pathogens 
(Vellosillo	et	al.,	2013).

Both insect community composition and variation in ant 
(Formicidae) abundance and incidence were associated with gamma‐
aminobutyric	 acid	 (GABA)	 signalling	 (via	 enriched	 gene	 ontology).	
GABA	 is	 a	 nonproteinaceous	 amino	 acid	 that	 occurs	 in	 animals,	
plants	and	bacteria	(Ramesh,	Tyerman,	Gilliham,	&	Xu,	2017).	In	an‐
imals,	GABA	 functions	 as	 one	 of	 the	major	 inhibitory	 neurotrans‐
mitters in the central nervous system (Ramesh et al., 2017). In 
plants,	 GABA	 signalling	 influences	 plant	 growth,	 development,	
stress response and long‐distance transport (Ramesh et al., 2017). 
In	addition,	GABA	signalling	plays	a	role	in	insect	resistance	(Bown,	
MacGregor,	 &	 Shelp,	 2006;	 Scholz,	 Reichelt,	Mekonnen,	 Ludewig,	
&	Mithofer,	2015),	since	insect‐consumed	GABA	acts	an	inhibitory	
neurotransmitter, causing physiological stress in the insect that de‐
creases its growth and survival (Ramesh et al., 2017).

Insect	 community	 composition	 (NMDS	 of	 common	 insect	
species) was also associated with an early nodulin‐like (ENODL) 
transmembrane protein (Potra001060g09097), that is thought to 

transport	carbohydrates	 (Denancé,	Szurek,	&	Noël,	2014).	Wang	
et al. (2015) identified three ENODL proteins that putatively in‐
creased Bt rice resistance to brown planthopper infestation, 
thereby suggesting that ENODL proteins may influence plant–in‐
sect interactions. Here, we show that allelic variation in an ENODL 
gene influences insect community species diversity and the abun‐
dance of interacting foundation species: aphids and tending ants 
(Barker et al., 2018; Keith, Bailey, & Whitham, 2010; Lamit et al., 
2015; Wimp & Whitham, 2012), consistent with the notion of an 
ecologically	 important	 gene	 (EIG;	 Skovmand	 et	 al.,	 2018).	 The	
mechanism by which ENODL gene variation may influence insects 
in our system remains unknown, but variation in carbohydrate 
transport could directly influence aphids and ants via their inter‐
actions with carbohydrate‐rich honeydew, and/or indirectly influ‐
ence	insects	via	numerous	tree	traits,	including	both	growth	(size)	
and defence. To our knowledge, this is the first identification of 
allelic variation in a plant gene that is associated with a complex 
insect community trait (i.e., insect community composition).

4.3 | Plant trait variation shapes insect communities

While	we	 found	 no	 overlap	 in	 SNP	 associations	 across	 tree	 traits	
and insect phenotypes (potentially due to the limited number of 
tree	 trait‐associated	 SNPs),	 our	 covariate	 analyses	 revealed	 that	
several	tree	traits	explain	significant	insect	SNP	associations.	These	
results suggest that the tree traits are important in structuring the 
associated insect communities, thereby providing a mechanistic link 
by which plant genes shape insect community composition (e.g., 

TA B L E  3  Summary	of	tree	trait	covariates	that	eliminate	or	reduce	the	number	of	significant	SNPs	associated	with	particular	insect	traits	 
for the WisAsp aspen (Populus tremuloides) genetic mapping population (N	=	328	genets	for	insect	traits).	Covariates	that	reduce	SNP	 
associations reveal tree traits that are important in shaping the particular insect phenotype, and are indicated by an “X” below.  
Genome‐wide	association	models	were	analysed	in	plink	without	a	kinship	matrix	and	standardized	tree	traits	(each	tree	trait	was	analysed	 
in separate models)

Insect trait with signifi‐
cant SNP associations

Tree size/growth Leaf morphology Bud phenology Phytochemistry

Spring 
volume

Spring 
basal 
area

Average 
basal 
area

Average 
volume

Absolute 
growth

Relative 
growth

Basal area 
increment

Specific 
leaf area

Individual 
leaf area

EFN  
density

Timing of 
bud break

Timing of 
bud set

Growing 
season 
length

Condensed 
tannins Salicortin Tremulacin

Phenolic 
glycosidesa

Total 
defence 
chemistryb Carbon:nitrogen Nitrogen

Ecteodemia populella (P/A)      X               

Blotch	Mine	(P/A)         X X    X X  X X X  

Phyllonorycter tremuloi‐
diella (P/A)

X X X   X X  X  X    X X X    

Clostera albosigma (P/A)     X X X  X  X    X X X    

Choristoneura rosaceana  X X X       X X  X X X X    

Cecidomyiidae     X    X X     X  X    

Cecidomyiidae (P/A)         X X X   X X X X    

Tortricidae  X X X   X  X  X   X X X X    

Lasius neoniger         X     X X X X    

Lasius neoniger (P/A)         X      X X X    

Abbreviations: EFN, extrafloral nectary; P/A, presence/absence.
aPhenolic glycosides = combined levels of salicortin and tremulacin. 
bTotal defence chemistry = combined levels of salicortin, tremulacin and condensed tannins. 
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Bangert et al., 2006). Previous work in Populus and Salix has also 
shown that canopy insect communities are shaped by these particu‐
lar	plant	traits,	 including	plant	size	 (Barbour	et	al.,	2015;	Barker	et	
al., 2018; Evans et al., 2016; Robinson et al., 2012), individual leaf 
area (Robinson et al., 2012), timing of bud break (Barker et al., 2018; 
Evans et al., 2016; Falk, 2017) and defence phytochemistry (Barbour 
et al., 2015; Barker et al., 2018; Brito, 2017; Wimp et al., 2007). For 
instance, larger plants and plants with larger leaves and longer peti‐
oles have denser and more diverse insect communities (Barker et al., 
2018; Robinson et al., 2012). Timing of bud phenology differentially 
affects the incidence of leaf‐modifying insect species (Barker et al., 
2018). Also, variation in defence phytochemistry corresponds with 
variation in insect communities (Bangert et al., 2006; Wimp et al., 
2007).	We	recognize	that	our	work	was	conducted	in	a	young	aspen	
plantation with immature trees. Insect communities are likely richer, 
and the plant traits structuring those communities may be different, 
in mature, closed‐canopy aspen forests.

Previously identified Populus genes that correlate with insect 
metrics have been linked to plant traits, including defence and 
leaf	 morphology.	 Nine	 of	 the	 13	 insect‐associated	 QTL	 found	 by	
Dewoody	et	al.	(2013)	contained	shikimate–phenylpropanoid	path‐
way genes (both phenolic glycosides and condensed tannins are 
products	of	that	pathway),	and	two	of	the	QTL	were	in	genomic	hot	
spots	 for	 leaf	morphology.	 In	 addition,	Bernhardsson	 et	 al.	 (2013)	
found	 overlap	 between	 insect‐associated	 SNPs	 and	 inducible	 de‐
fence genes (polyphenol oxidases and trypsin inhibitors).

Inclusion	of	 tree	 trait	 covariates	 in	 our	GWA	models	 did	 not	
eliminate	 all	 of	 the	 ant‐related	 genes:	 the	 SNPs	 in	 the	 mRNA	

splicing factor (Potra003266g21171) that responds to biotic stress 
remain. This implies that (a) tree traits that we did not survey or (b) 
more likely, biotic/environmental factors (e.g., aphid populations; 
most of our ant species were tending aphid colonies), structure ant 
incidence and abundance.

While we have focused on bottom‐up mechanisms underlying 
insect	communities	on	aspen,	we	recognize	that	top‐down	factors	
(e.g., predation and parasitism) also influence insect herbivores 
(Katano,	Doi,	 Eriksson,	&	Hillebrand,	 2015;	 van	Veen,	Morris,	 &	
Godfray,	2006;	Vidal	&	Murphy,	2018).	A	meta‐analysis	by	Vidal	
and	Murphy	(2018)	revealed	that	top‐down	forces	are	often	stron‐
ger than bottom‐up effects in influencing insect herbivore fitness. 
Yet, these differences varied across insect groups (e.g., specialist 
vs. generalist insects and across feeding guilds). Thus, our limited 
association of plant genes to insect metrics likely derived in part 
from the effects of other ecological interactions on structuring 
these insect communities.

4.4 | Gene coverage

Our	genetic	data	set	included	56%	of	the	P. tremuloides genes, a cov‐
erage rate that reduced our ability to detect significant associations 
for some traits. To determine the extent to which our probe design 
included or excluded genes that are known to influence particular 
traits,	we	used	Knetminer	(Knowledge	Network	Miner,	Hassani‐Pak,	
2017) with P. trichocarpa homologs to compare our gene list to lists 
of genes that are associated with particular trait search terms (e.g., 
“phenylpropanoid	pathway”,	“biomass”,	“SLA”	and	“insect”).	Our	gene	

TA B L E  3  Summary	of	tree	trait	covariates	that	eliminate	or	reduce	the	number	of	significant	SNPs	associated	with	particular	insect	traits	 
for the WisAsp aspen (Populus tremuloides) genetic mapping population (N	=	328	genets	for	insect	traits).	Covariates	that	reduce	SNP	 
associations reveal tree traits that are important in shaping the particular insect phenotype, and are indicated by an “X” below.  
Genome‐wide	association	models	were	analysed	in	plink	without	a	kinship	matrix	and	standardized	tree	traits	(each	tree	trait	was	analysed	 
in separate models)

Insect trait with signifi‐
cant SNP associations

Tree size/growth Leaf morphology Bud phenology Phytochemistry

Spring 
volume

Spring 
basal 
area

Average 
basal 
area

Average 
volume

Absolute 
growth

Relative 
growth

Basal area 
increment

Specific 
leaf area

Individual 
leaf area

EFN  
density

Timing of 
bud break

Timing of 
bud set

Growing 
season 
length

Condensed 
tannins Salicortin Tremulacin

Phenolic 
glycosidesa

Total 
defence 
chemistryb Carbon:nitrogen Nitrogen

Ecteodemia populella (P/A)      X               

Blotch	Mine	(P/A)         X X    X X  X X X  

Phyllonorycter tremuloi‐
diella (P/A)

X X X   X X  X  X    X X X    

Clostera albosigma (P/A)     X X X  X  X    X X X    

Choristoneura rosaceana  X X X       X X  X X X X    

Cecidomyiidae     X    X X     X  X    

Cecidomyiidae (P/A)         X X X   X X X X    

Tortricidae  X X X   X  X  X   X X X X    

Lasius neoniger         X     X X X X    

Lasius neoniger (P/A)         X      X X X    

Abbreviations: EFN, extrafloral nectary; P/A, presence/absence.
aPhenolic glycosides = combined levels of salicortin and tremulacin. 
bTotal defence chemistry = combined levels of salicortin, tremulacin and condensed tannins. 
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list	covered	54%–71%	of	the	genes	associated	with	tree	traits	and	
insect	resistance	(Table	S5).	Although	our	probe	set	did	not	include	
every gene, our findings nonetheless reveal new gene associations 
that underlie both Populus traits and canopy insect communities. In 
comparison, most previous Populus	GWAS	studies	captured	smaller	
sets	of	genes	(1,233–18,153	genes)	with	fewer	SNPs	(1,233–77,000	
SNPs;	McKown	et	al.,	2014,	Du	et	al.,	2016,	Hallingbäck	et	al.,	2016,	
Fahrenkrog	 et	 al..,	 2017,).	 Several	 recent	 studies	 of	 Populus have 
employed greater coverage, but only examined individual tree traits 
(e.g.,	 bud	 break;	McKown,	 Klápště,	 Guy,	 El‐Kassaby,	 &	Mansfield,	
2018 and lignin biosynthesis; Zhang et al., 2018).

5  | CONCLUSIONS

Over the last 15 years, community genetics perspectives linking 
plant intraspecific genetic variation to associated community met‐
rics have garnered considerable attention in the literature of evo‐
lutionary	ecology.	Most	of	the	relevant	empirical	studies,	however,	
have been conducted at the level of plant genotypes, leaving the 
underlying genes unresolved. Here, we identified ten new Populus 
genes that structured associated insect communities, complement‐
ing	 the	 previously	 identified	 list	 of	QTL	 from	 Bernhardsson	 et	 al.	

(2013)	(12	SNPs,	2013)	and	Dewoody	et	al.	 (2013)	(14	QTL,	2014).	
Our findings also reveal that ecologically relevant plant traits struc‐
ture gene–insect associations, highlighting the importance of these 
traits as the mechanistic bridge between plant genes and insect 
communities (Barbour et al., 2015; Barker et al., 2018; Harrison et 
al., 2018; Robinson et al., 2012).

Genetic	variation	 in	expression	of	key	plant	traits	 is	 influenced	
by	both	plant	ontogeny	and	environmental	context	 (Lindroth	&	St.	
Clair,	2013).	Future	work	should	address	how	plant	genetic	contri‐
butions	 to	 insect	 community	 organization	 may	 shift	 across	 plant	
ontogenetic	 trajectories	 (Gosney	 et	 al.,	 2014;	 Holeski,	 Hillstrom,	
Whitham, & Lindroth, 2012) and environmental gradients (Burkle, 
Souza,	Genung,	&	Crutsinger,	2013).
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