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1  | INTRODUC TION

Identification of the genetic mechanisms of species interactions 
and community composition is a major aim of community genetics. 
To date, studies have determined that different genotypes of plants 
have different communities of associated organisms (e.g., insects and 
endophytes) and that community relatedness is mirrored by the ge‐
netic relatedness among plant genotypes in a common environment 
(Barbour et al., 2016; Kagiya, Yasugi, Kudoh, Nagano, & Utsumi, 2018; 

Keith, Bailey, Lau, & Whitham, 2017; Koricheva & Hayes, 2018). These 
associated communities are shaped by key plant traits, including 
morphology, phenology and phytochemistry (Barbour et al., 2015; 
Barker, Holeski, & Lindroth, 2018; Robinson, Ingvarsson, Jansson, & 
Albrectsen, 2012; Wimp et al., 2007). To date, this research has been 
conducted primarily at the plant genotype level, and thus, the identity 
of the underlying plant genes has remained largely unresolved.

Previous studies that have investigated the genetics of plant 
resistance to insect herbivores have assessed insect‐associated 
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Abstract
Community genetics aims to understand the effects of intraspecific genetic varia‐
tion on community composition and diversity, thereby connecting community ecol‐
ogy with evolutionary biology. Thus far, research has shown that plant genetics can 
underlie variation in the composition of associated communities (e.g., insects, lichen 
and endophytes), and those communities can therefore be considered as extended 
phenotypes. This work, however, has been conducted primarily at the plant genotype 
level and has not identified the key underlying genes. To address this gap, we used 
genome‐wide association mapping with a population of 445 aspen (Populus tremu‐
loides) genets to identify the genes governing variation in plant traits (defence chem‐
istry, bud phenology, leaf morphology, growth) and insect community composition. 
We found 49 significant SNP associations in 13 Populus genes that are correlated 
with chemical defence compounds and insect community traits. Most notably, we 
identified an early nodulin‐like protein that was associated with insect community di‐
versity and the abundance of interacting foundation species (ants and aphids). These 
findings support the concept that particular plant traits are the mechanistic link be‐
tween plant genes and the composition of associated insect communities. In putting 
the “genes” into “genes to ecosystems ecology”, this work enhances understanding 
of the molecular genetic mechanisms that underlie plant–insect associations and the 
consequences thereof for the structure of ecological communities.
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damage, fitness, abundance and diversity traits (Bernhardsson 
et al., 2013; Dewoody et al., 2013; Rönnberg‐Wästljung, Ahman, 
Glynn, & Widenfalk, 2006; Thoen et al., 2017; Zinkgraf, Meneses, 
Whitham, & Allan, 2016). While many studies have explored the 
genetic basis of resistance in crops (e.g., Tzin et al., 2015) and 
Arabidopsis thaliana (e.g., Thoen et al., 2017), few have investi‐
gated the underlying plant genetics of complex insect communi‐
ties (Bernhardsson et al., 2013; Dewoody et al., 2013). Dewoody 
et al. (2013) used QTL mapping to identify genetic regions associ‐
ated with foliar damage caused by various insect guilds in F2 ped‐
igrees of Populus trichocarpa × deltoides hybrids. Bernhardsson et 
al. (2013) used association mapping to determine whether seven 
defence‐related genes in European aspen (Populus tremula) cor‐
related with insect guilds and species richness. Both studies found 
a modest number of QTN (12–14) with small‐ to medium‐sized ef‐
fects (R2 = 0.03–0.15 per QTL).

To significantly advance the field of community genetics, 
a broader experimental approach is required. First, research is 
needed at the genomic scale, with fine resolution (e.g., genome‐
wide association mapping [GWAS], Ingvarsson & Street, 2011), to 
pinpoint causative plant genes and genetic regions that structure 
associated communities. Second, like the work by Bernhardsson et 
al. (2013), plant traits (e.g., secondary metabolites) that are known 
to shape associated communities should be included in analyses to 
identify genes underlying the traits and to assess whether there is 
overlap with genes that underlie community composition. Third, 
more complex association models (e.g., multivariate GWAS) should 
be used to better capture the complexity of community traits 
rather than simplifying these metrics to abundance and richness 
values.

Here, we identified genes underlying both ecologically relevant 
tree traits in, and associated insect communities on, trembling aspen 
(Populus tremuloides), using a recently established genetic mapping 

population of 445 aspen genets. We quantified 20 tree traits, in‐
cluding size, growth, foliar morphology, foliar phenology and phy‐
tochemistry, and surveyed herbivorous insect and ant communities. 
We chose herbivorous insects because they interact directly with 
the host tree, and thus should be affected by particular tree traits 
(e.g., defence chemicals) and underlying tree genetics. We also in‐
cluded ant communities, since the ant species in our surveys tended 
aphid populations and had a pronounced effect on the canopy in‐
sect community (Barker et al., 2018; Wimp & Whitham, 2012). We 
then used both univariate and multivariate genome‐wide association 
analyses with a data set of over 170,000 SNPs (single nucleotide 
polymorphisms) for each aspen genet to identify the underlying 
genes. We predicted that some of the same loci that shaped tree 
traits would also be associated with the composition of insect com‐
munities. We also predicted that insect species that are closely as‐
sociated with the host tree (e.g., leaf‐galling insects) would be more 
likely to have associations with tree genes than insects that interact 
less closely (e.g., free‐feeding insects and ants).

2  | METHODS

2.1 | Study system

Trembling aspen (P. tremuloides) is the most widely distributed and 
genetically diverse tree species in North America (Mitton & Grant, 
1996). It exhibits little population structure, with evidence of 
only two subpopulations (south‐western and northern, Callahan 
et al., 2013) across its range. This feature makes aspen ideal for 
genome‐wide association analyses, since population structure 
can mislead results with false‐positive associations (Ingvarsson 
& Street, 2011). In addition, aspen is a foundation species with 
substantial impacts on dependent communities (Hillstrom, 2009). 
Studies of aspen (Barker et al., 2018; Hillstrom, 2009) and other 

F I G U R E  1   (a) Map of Wisconsin that 
displays the origin of the WisAsp aspen 
genets (white points, shown with 30% 
transparency) and the WisAsp common 
garden (red point). (b) Histogram of 
relatedness values (calculated using 
gemma, derived from a kinship matrix) 
for all pairwise comparisons of the 445 
genets. Low values (0) indicate that the 
pair of genets is completely unrelated, 
whereas higher values (0.25) indicate that 
the pair of genets is more related and have 
a potential sibling relationship
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Populus species (Bangert et al., 2006; Robinson et al., 2012; Wimp, 
Martinsen, Floate, Bangert, & Whitham, 2005) have linked plant 
genotypes to unique arthropod communities, and these commu‐
nities have low to high broad‐sense heritabilities (0.09–0.78 H2). 
Finally, key tree traits (tree size, bud phenology, extrafloral nectar‐
ies and secondary chemistry) have been shown to structure insect 
community composition (Bangert et al., 2006; Barker et al., 2018; 
Robinson et al., 2012).

2.2 | WisAsp common garden

We established a genetic mapping population of aspen in 2010 with 
genets collected from throughout Wisconsin (Figure 1, latitude range: 
358 km, longitude range: 186 km, corresponding to the northern sub‐
population of aspen; Callahan et al., 2013). The trees were planted in 
a randomized complete block design with four replicate blocks and 
a perimeter of nonexperimental trees (to minimize edge effects) at 
the University of Wisconsin's Arlington Agricultural Research Station 
(Figure S2). We originally planted 392 genets (N = 1,568); however, 
due to vole damage many trees died in both 2010 (N = 399) and 2011 
(N = 334). We thus replanted some of our original genets and also col‐
lected and planted new genets for a total of 445 aspen genets with 
3.56 replicates on average (±1.80 SD, N = 1,824 in total). The garden 
was planted in a former grass–alfalfa field with Joy silt loam soil (Staff, 
NRCS, & USDA, 2012). Trees were planted with 2.5 m × 2.5 m spac‐
ing. The entire garden was surrounded by a 2.4‐m‐tall electric fence 
to exclude deer, and the site was mowed and maintained as needed. 
The trees were 4–5 years old at the time of data collection (75% of the 
trees were at least 1.6 and 2.6 m tall in 2014 and 2015, respectively).

2.3 | Tree trait surveys

We measured ecologically relevant tree traits, including growth 
(measured 2012–2015), foliar morphology (2014–2015), phenology 
(2014–2015) and defence (phytochemistry 2014–2015, extrafloral 
nectaries 2014). To survey growth, we measured tree volume after 
each growing season. We recorded basal diameter (10  cm above 
ground level) and height (ground level to the base of the apical bud). 
Volume was calculated as diameter2 × height, a metric that correlates 
well with biomass (Stevens, Waller, & Lindroth, 2007). We calculated 
absolute growth as log10(treevolumefinal/treevolumeinitial) and rela‐
tive growth as ln(treevolumefinal) − ln(treevolumeinitial), respectively.

To measure foliar morphology, we haphazardly collected 20–30 
leaves from each tree in late June/early July and scanned them on 
a LICOR flatbed scanner (Version 3100). The leaves were then vac‐
uum‐dried and weighed. We calculated both average individual leaf 
area and specific leaf area (leafarea [cm2]/mass [g]).

To assess phenology, we recorded timing of bud break and bud 
set using 5‐point and 2‐point scales, respectively. The bud break 
scale was adapted from Robinson et al. (2012) and varied from (1) 
dormant buds to (3) broken buds to (5) leaves that were flushed and 
completely unrolled but not yet fully expanded (Figure S1). The bud 

set scale measured whether the buds were still growing (0) or set and 
dormant (1). We examined each tree every 2–3 days for each survey. 
For bud break, we measured the most advanced bud on the tree, fol‐
lowing Project BudBurst (http://budbu​rst.org/) protocols, while for 
bud set we measured the terminal stem bud only. In addition to mea‐
suring date of bud break and bud set, we also calculated the length 
of the growing season for each tree in number of days as Julian bud 
set date − Julian bud break date.

To quantify foliar defences and nitrogen levels, we collected 
leaves in both late June/early July (same leaves as were used for 
foliar morphology assessment) and August to analyse phytochem‐
istry and EFN density, respectively. For the June/July collection, 
we pulverized the dried and weighed leaves to a fine powder by 
ball milling and stored them at −20°C. We quantified foliar con‐
centrations of nitrogen, condensed tannins and salicinoid phenolic 
glycosides using near‐infrared reflectance spectroscopy (NIRS; see 
Table S1 for information on the chemical prediction models; FOSS 
NIRSystems), as described by Rubert‐Nason et al. (2013). Spectra 
were collected from dry, powdered leaf samples packed into 5‐
cm ring cup cells. After exclusion of outlier spectra with a global 
Mahalanobis distance (MD) >3, we developed calibrations relating 
NIR spectral bands (1,100–2,500  nm) to phytochemical parame‐
ters using a subset of samples (~150–400) chosen by the SELECT 
algorithm (winisi version 1.50 software Foss‐Tecator; Infrasoft 
International LLC) with a neighbourhood MD of 1.0 (Shenk & 
Westerhaus 1991a,1991b). We acquired nitrogen reference values 
by combustion gas chromatography on a Thermo Flash EA1112 el‐
emental analyzer (Thermo Finnigan), as described in Sollins et al. 
(1999). Condensed tannin reference values were measured colo‐
rimetrically (550 nm) relative to purified P. tremuloides condensed 
tannin material (Hagerman & Butler, 1980), after extraction of fo‐
liage into 70:30 v/v acetone/water and reaction with Fe(III) under 
acidic conditions (Porter, Hrstich, & Chan, 1986). Phenolic glyco‐
side reference values were determined by extraction of foliage into 
methanol, followed by separation of extracts by ultra‐high‐perfor‐
mance liquid chromatography and quantification by negative elec‐
trospray ionization single quadrupole mass spectrometry (Waters 
ACQUITY iClass UPLC/MS system), following methods adapted 
from Abreu, Ahnlund, Moritz, and Albrectsen (2011) and Rubert‐
Nason, Hedman, Holeski, and Lindroth (2014), Rubert‐Nason, 
Keefover‐Ring, and Lindroth (2018). Samples with anomalous 
spectra (N ~ 50, identified by MD >3) were also analysed by these 
reference methods. We developed partial least squares regression 
models relating NIR spectra to phytochemical reference values 
(Table S1) and applied these models to predict the phytochemistry 
in all 1,824 leaf samples from their corresponding NIR spectra.

To determine extrafloral nectary (EFN) density (number per leaf), 
we haphazardly collected 12 leaves from each tree in August 2014 
and stored them on ice in the field. We then digitally scanned the 
upper surface of each leaf and counted the number of EFNs that 
were present on each leaf in the scanned images. EFNs in aspen are 
located at the leaf/petiole juncture.
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Trait variation, broad‐sense heritability estimates and relation‐
ships (genetic correlations) are all reported by Barker et al. (2018).

2.4 | Insect community surveys

We visually surveyed herbivorous insect and ant species on the orig‐
inally planted trees (N = 989, 328 aspen genets, all planted in 2010) 
in mid‐July to early August 2014–15. We standardized our surveys 
by time to account for variation in tree canopy sizes. To ensure that 
our methods captured the complete insect community, we first con‐
structed rarefaction curves of number of insect species observed 
per time interval (30‐s intervals with a total of 20 min surveyed for 
each tree) for 20 trees distributed throughout the garden (early 
July 2014 and 2015). The rarefaction curves revealed that species 
richness saturated at approximately 3 min of survey time for small 
trees (<1.5 m tall) and 6 min for large trees (>2.5 m tall). We there‐
fore surveyed each tree for at least three minutes, and larger trees 
were surveyed for additional time units (3‐min increments). We then 
standardized the insect counts by minutes surveyed (e.g., number of 
insects per species per minute). We stopped the survey time to col‐
lect, identify and record insects.

In 2014, we surveyed the entire tree. In 2015, due to increased 
tree size, we divided the canopy into lower, middle and upper sec‐
tions and surveyed each for the same interval of time. We limited the 
maximum time interval to 4 min (12 min of survey time for a tree), 
which allowed us to survey a large subset of the canopy, but not 
necessarily the entire canopy. We surveyed the insect communities 
from 8:30 a.m. to 4 p.m. each day, and we conducted the surveys 
only on days with fine weather (25.6°C ± 7.1 average maximum tem‐
perature, 2.4 m/s ± 1.2 average wind speed, sunny to partly cloudy).

One author (H.L. Barker) trained a team of 6–7 surveyors for each 
insect survey (2014–15) and was present each day of the survey to 
address insect identification questions. Insects were identified using 
field guides and keys, and specimens were collected as needed for 
further identification in the laboratory. All common insects were 
identified to species and rare insects to morphospecies (family level). 
We also surveyed insect‐inflicted damage, including leaf mines, leaf 
and petiole galls, and leaf rolls and tents. Vouchers of common in‐
sect species are preserved in the UW‐Madison Wisconsin Research 
Insect Collection, and H.L. Barker has provided a website (https​://
aspen​insec​ts.wordp​ress.com/) that displays information (life his‐
tory, key identification features, etc.) for the common insect species 
found at WisAsp.

Insect community variation, broad‐sense heritability estimates 
and insect relationships (genetic correlations) are all reported by 
Barker et al. (2018).

2.5 | Genetic analyses

Foliar DNA was extracted from one ramet in each genet (leaves 
were collected in June 2012–14 and freeze‐dried prior to extrac‐
tion). Probes (N  =  65,000, 120  bp in length) were designed by 

Rapid Genomics and Nathaniel Street (Umeå Plant Science Center) 
to align to each gene (exome capture) from the P. tremula genome 
assembly version 1.1, which contains 9,789 gene‐bearing scaffolds 
and 36,322 gene models (Lin et al., 2018; Sjödin, Street, Sandberg, 
Gustafsson, & Jansson, 2009). These probes were then tested on 
a population of 24 Populus genets to identify probes that were 
suitable for sequencing (e.g., where sequencing reads mapped 
to a unique genomic region). This test resulted in 45,934 probes 
from 5,478 scaffolds and located in 20,483 gene models, with an 
average of 2.3 probes/gene for sequencing. Extracted DNA from 
all 434 genets was then sent to Rapid Genomics for paired‐end 
sequencing (2 × 100 bp) on an Illumina HiSeq 2000 with a mini‐
mum sequencing depth of 15× per sample. Based on technical rep‐
licates, the sequencing error rate was estimated to be 0.2%. The 
raw sequencing reads were mapped to the P. tremula version 1.1 
genome assembly (Lin et al., 2018) using bwa‐mem version 0.7.12 
(Li & Durbin, 2009) and sorted with samtools version 1.2 (Li et 
al., 2009). Optical duplicates were marked using picard version 
1.127 (http://broad​insti​tute.github.io/picar​d/). Local realignments 
around indels and per individual genotyping (HaplotypeCaller in 
gVCF mode) were performed with gatk version 3.4‐46 (Van der 
Auwera et al., 2013; DePristo et al., 2011; Mckenna et al., 2010) 
with a diploid ploidy setting and otherwise default settings. 
Individual g.vcf files were combined into batches of ~200 samples 
using gatk CombineGVCFs to hierarchically merge them into a sin‐
gle gVCF. Finally, a joint call over all samples was conducted using 
gatk GenotypeGVCFs with a standard emit confidence of 10 and a 
standard call confidence of 20.

A subset of genets (N = 11) had been sequenced previously with 
whole‐genome sequencing (for complete details, see Wang, Street, 
Scofield, & Ingvarsson, 2016). Single nucleotide polymorphisms from 
these 11 genets were merged with SNPs from probe sequencing (434 
genets) and filtered for genotype and sample quality metrics using VCF 
and BCFtools (Danecek et al., 2011, see full SNP filtering pipeline in 
Table S2). After the SNPs were filtered, missing genotype information 
was imputed using LinkImpute (Money et al., 2015). This SNP filtering 
pipeline resulted in a data set of 173,520 SNPs distributed across 5,332 
scaffolds and 20,483 genes with eight SNPs per gene on average.

Finally, seven genets were removed after pruning full‐sibs from 
our data set prior to GWA analyses. After full‐sib removal, genetic 
relatedness among the remaining individuals in the WisAsp pop‐
ulation was extremely low, with a mean of −0.002 (±0.007 SD, 
Figure 1).

2.6 | Statistical methods

Several factors can influence the success of genome‐wide associa‐
tion (GWA) analyses to detect significant genes underlying traits of 
interest (Ingvarsson & Street, 2011), including measurement error 
and population structure. Measurement error can bias the trait 
data, impacting the ability to find SNP associations, whereas under‐
lying genetic structure can lead to the detection of spurious SNP 
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associations. To deal with potential biases, we first assessed struc‐
ture within the WisAsp population using the multilocus approach, 
Admixture (Alexander, Novembre, & Lange, 2009). Following rec‐
ommendations of the Admixture manual, the filtered SNPs were 
first pruned by linkage disequilibrium before analyses (pairs of 
SNPs within a 50‐bp window were pruned if they exhibited an 
r2 value >0.2 using plink), resulting in 139,338 SNPs. This set of 
SNPs was then analysed with various population structures (K = 1 
through 5) and cross‐validation to identify the number of popula‐
tions that best explain variation in allele frequencies among genets.

We then performed both univariate and multivariate GWA 
analyses with the 173,520 SNP data set to identify genomic re‐
gions in aspen that are associated with phenotypic traits (i.e., phe‐
nology, growth, leaf morphology, phytochemistry and extrafloral 
nectaries) and insect populations (i.e., presence or abundance of 
particular species), families, guilds and community metrics (i.e., 
species richness, abundance and nonmetric multidimensional scal‐
ing [NMDS] axes for Bray–Curtis community dissimilarity matri‐
ces; for complete list of traits, see Table S3). We assessed both 
the presence/absence and abundance of various insect species 
and groups (families, guilds) to see whether the same or differ‐
ence SNPs are associated with these metrics. We first regressed 
each trait and metric (xjklm, e.g., species richness) on covariates, 
including experimental block (bj) and year (yj) in which the data 
were collected (both as fixed effects) and genet (gl, as a random 
effect) using lme4 in R (Bates, Maechler, Bolker, & Walker, 2015; 
see below). The grand mean is u, and ejklm is the error. To best meet 
the assumptions of the linear mixed models, each trait and met‐
ric (xjklm) was boxcox‐transformed using the MASS package in R 
(Venables & Ripley, 2002). From these models, we extracted the 
best linear unbiased predictors (BLUP) for each genet and rank‐
transformed these values for GWA analyses (Goh & Yap, 2009).

To both identify gene associations and conduct sensitivity anal‐
ysis for our GWAS models, we used two statistical packages: plink 
version 1.9 (Purcell et al., 2007) for both univariate and multivariate 
traits and genome‐wide efficient mixed model association (gemma 
version 0.96, Zhou & Stephens, 2012) for univariate traits (results 
shown in supplemental data). plink uses a simple linear regression 
without corrections for relatedness among individuals, while gemma 
uses a compressed mixed linear model (Zhang et al., 2010), which 
controls for relatedness among individuals with a centred kinship 
matrix. Kinship does not appear to be an important factor for our 
WisAsp population, as suggested by the low relatedness of individ‐
uals after removal of full‐sibs. Therefore, inclusion of a kinship ma‐
trix in the GWA analyses had little effect on the results (90% of the 
significant associations remained, Table S4). We also did not include 
any covariates for population structure, since Admixture results in‐
dicated that our sample population is panmictic (Figure 1). For data 
analyses, we used SNPs with a minor allele frequency of at least 
0.05 and we corrected for multiple testing using a false discovery 
rate (FDR) of 0.10 (which is similar to previous FDR cut‐off values 

for Salicaceae GWAS studies, e.g., Hallingbäck et al., 2016) for each 
GWAS model calculated with the qvalue package in R (Bass, Storey, 
Dabney, & Robinson, 2015). Data from this manuscript can be found 
in the Data Dryad Repository (Barker et al., 2019).

To further elucidate the function of particular genetic regions 
and the mechanism by which they may influence insects, we com‐
pared significant associations with the annotated P.  trichocarpa 
genome version 3.0 (Tuskan et al., 2006), P.  tremuloides genome 
version 1.1 (Lin et al., 2018) and A.  thaliana genome TAIR10 
(Swarbreck et al., 2007) using the Populus Genome Integrative 
Explorer (popgenie, Sjödin et al., 2009). To determine whether par‐
ticular tree traits were important in structuring insect communi‐
ties, we included various standardized tree traits as covariates in 
the insect community GWA analyses in plink. If the significant in‐
sect‐associated SNPs disappeared with inclusion of the tree trait 
covariates, we inferred that these tree traits were important in 
shaping the SNP‐related variation in the insect phenotype.

To link gene functions, products and processes to associated 
traits, we conducted gene set enrichment analysis using the ge‐
neric gene ontology mapper (http://go.princ​eton.edu/cgi-bin/GOTer​
mMapper; Boyle et al., 2004; Harris et al., 2004), including the top 
0.1% most significant SNPs (N = 174) from each GWA test. These 
gene sets were compared to the background set of genes that were 
included in our probe set (based on Arabidopsis homologs), and only 
unique gene names were used to control for differences in gene 
size and the number of SNPs/gene. These tests were run with a 
Bonferroni p‐value cut‐off of 0.10.

3  | RESULTS

Of 79 GWA analyses conducted for the various tree and insect traits, 
we identified significant associations for 15 of these traits (Table 1 and 
Table S3). Forty nine SNPs (five synonymous and 27 nonsynonymous 
and 17 noncoding) from 13 different genes were identified, which 
were distributed across eight chromosomes (based on alignment to 
P. trichocarpa version 3.0 genome). Individual SNPs explained 5.7%–
8.4% of the phenotypic variation for the associated trait (R2 values in 
Table 1). Of the unique associated SNPs, nine were 3′ UTR or intron 
variants that likely influence gene expression, four were missense mu‐
tations that alter the amino acid sequence of the affected gene and 
two were located in upstream or downstream regions (within 2 kb) 
and could also affect gene expression. Many of the genes harbouring 
significant SNPs are involved in modulating gene expression, protein 
modification or the movement of resources in and out of cells. In addi‐
tion, several of the identified genes are known to be regulated by plant 
hormones (jasmonic acid, abscisic acid, brassinosteroids, ethylene).

3.1 | SNPs associated with tree trait variation

Of the 20 univariate GWA tests for tree traits, three resulted in 
significant associations. These associations were for levels of 
tremulacin, phenolic glycosides (combined levels of tremulacin 

xjklm=u+bj+yk+gl+ejklm
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and salicortin) and total defence phytochemistry (combined lev‐
els of tremulacin, salicortin and condensed tannins, Table 1). Two 
SNPs in Potra003979g23949 that encode for an ASC1‐like (Cyp1 
Absence of growth Suppressor) protein were identified in GWA 
analyses for both tremulacin and phenolic glycosides. The associ‐
ated genes accounted for 5.9%, 5.9% and 5.7% of the variation in 
tremulacin, phenolic glycosides and total defence phytochemistry, 
respectively. No SNPs were identified for tree growth/size metrics, 
bud phenology, leaf morphology, foliar nitrogen and the density of 
extrafloral nectaries (EFN). Multivariate GWA analysis of uncorre‐
lated (r < 0.70) tree traits (i.e., relative and absolute growth, specific 
leaf area, individual leaf area, EFN density, growing season length 
and levels of condensed tannins, phenolic glycosides and nitrogen) 
also resulted in no significant SNPs.

Of the gene set enrichment tests we performed for the 20 tree 
traits, eight exhibited significantly enriched gene ontology terms, in‐
cluding variation in tree size/growth metrics (e.g., spring volume and 
basal area increment), specific leaf area and EFN density (Table 2). 
Many of the tree size/growth metrics were enriched for genes in‐
volved in response to misfolded proteins, specific leaf area was en‐
riched for genes involved in defence (immune) response and EFN 
density was enriched for genes involved in glyceraldehyde‐3‐phos‐
phate metabolism.

3.2 | SNPs associated with insect variation

We identified significant associations in our GWA analyses for 
10 out of the 47 univariate insect traits. These associations were 
for variation in the incidence of Ecteodemia populella (petiole‐
galling moth), Phyllonorycter tremuloidiella (blotch mining moth), 
Clostera albosigma (leaf‐rolling moth), Cecidomyiidae (leaf‐roll‐
ing flies) and Lasius neoniger (most common ant species), and the 
abundance of C.  albosigma, Choristoneura rosaceana (leaf‐rolling 
moth), Tortricidae (leaf‐rolling moths) and L.  neoniger (Table 1). 
The significantly associated genes accounted for 7.4%–22.6% of 
the total variation for the insect traits (summing across all genes 
identified for each insect trait). When aphid incidence (BLUP) was 
added as a covariate within the GWAS model, all significant ant 
incidence and abundance of SNP associations remained, except 
for Potra002557g19270 (Table 1). No SNPs were identified for 
free‐feeding insects, leaf‐galling flies, several leaf‐mining moth 
species and insect community metrics (i.e., abundance, richness 
and Shannon index, Table S3).

To further explore the importance of particular tree traits to 
insect phenotypes, we conducted GWA analyses with those traits 
incorporated as covariates. Loss of significant SNP associations 
would indicate that the tree trait was important in (directly or in‐
directly) shaping the gene–insect relationship. Including tree trait 
covariates in the GWA models made many of these significant in‐
sect associations disappear (Table 3). In particular, individual leaf 
area, defence phytochemistry and tree size/growth traits elimi‐
nated all of the significant associations for particular leaf‐modi‐
fying insects. In addition, significant associations for leaf‐rolling 

insect species disappeared when bud phenology was included in 
the analysis. No tree trait covariate could completely eliminate 
the 12 significant SNPs for L.  neoniger abundance or incidence, 
but inclusion of either individual (tremulacin and salicortin) or 
combined levels of phenolic glycosides made three to four of 
the SNPs (found in Potra002557g19270 and Potra003286g21239) 
insignificant.

We identified significant associations for two out of nine 
multivariate insect traits. These associations were for nonmet‐
ric multidimensional scaling (NMDS) axes for variation in both 
the abundance and presence/absence of common insect species 
(Figure 2). Both multivariate traits were associated with the same 
gene, Potra001060g09097. The significant SNPs had variable effects 
on the different components of the trait, with coefficients ranging 
from −0.72 to 0.82 (Figure 2c). Specifically, aspen with the C allele at 
these SNP sites had a more diverse insect community (all common 
insects were more often present on these trees; Figure 2b) that was 
dominated by a few very abundant species (Harmandia sp., aphids 
and aphid‐tending ants; Figure 2a).

Of the 58 gene set enrichment tests we performed for insect 
phenotypes, 14 exhibited significantly enriched gene ontology terms 
(Table 2). Several of the enriched gene sets were associated with 
leaf‐galling and leaf‐rolling insects and multivariate insect traits. The 
enriched gene ontology terms included biosynthesis of an anthocy‐
anin‐containing compound, response to mechanical stimulus, cell 
wall biogenesis (notably for a leaf‐galling insect species), γ‐amino‐
butyric acid (GABA) transport and hormone biosynthesis/regulation 
(Table 2).

4  | DISCUSSION

Community genetics research has highlighted the importance of 
plant intraspecific variation in structuring associated communities 
(Barbour et al., 2016; Kagiya et al., 2018; Keith et al., 2017; Koricheva 
& Hayes, 2018; Schweitzer et al., 2008). That work, however, has 
focused primarily at the plant genotype level, and thus, the identity 
of the causative genes remains largely unresolved. Previous studies 
have identified a limited set of Populus genes associated with in‐
sect damage (e.g., mines, galls and herbivory; Dewoody et al., 2013, 
Zinkgraf et al., 2016) and insect community metrics (e.g., abundance 
and richness; Bernhardsson et al., 2013). Our research advances 
the discipline by identifying both genes and gene functions that un‐
derlie ecologically relevant tree traits and insect communities, and 
exploring relationships between insect‐associated genes and tree 
traits. Most notably, our research identified a gene that is involved 
in controlling a complex community trait (e.g., NMDS axes), which to 
our knowledge is the first of its kind. Our findings also reveal several 
new genes associated with variation in defence compounds, includ‐
ing salicinoid phenolic glycosides. In addition, we identified ten new 
associations for variation in the abundance and incidence of leaf‐
modifying insects and ants. Third, our results indicate that the ob‐
served effects of many of the insect‐associated genes are explained 
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by variation in tree traits, including phytochemistry, individual leaf 
area, timing of bud break and tree size. Finally, we identified gene 
functions and processes that are associated with tree size, growth 
and leaf morphology, and leaf‐galling, leaf‐rolling and free‐feeding 
insects, ants and insect community composition.

4.1 | Genes underlying tree traits

Our phytochemical traits had high heritability (H2  >  0.6), which 
likely explains why we were able to identify some of the underly‐
ing genes (Beavis, 1994). Both tremulacin and total phenolic glyco‐
sides (combined tremulacin and salicortin levels) were associated 
with an ASC1‐like protein, which is involved in protein translation 
and potential regulation by abscisic acid (Guo et al., 2011). In ad‐
dition, total defence phytochemistry (combined condensed tan‐
nin and phenolic glycoside levels) was associated with a ribosomal 
protein (Potra007960g26067) that has a physical relationship with 
a syntaxin protein (SYP121). This syntaxin protein is regulated by 
various hormones, including jasmonic acid, abscisic acid and sali‐
cylic acid, and the protein is involved in programmed cell death and 
defence response to pathogens. Thus, both these newly identified 
defence‐related genes are involved in altering gene expression and 
are regulated by plant hormones. These findings shed important 
light on the phytochemical pathway responsible for the produc‐
tion of salicinoids, which remains largely unresolved (Boeckler, 
Gershenzon, & Unsicker, 2011; Bresadola et al., 2019; Woolbright 
et al., 2018; J. Zhang et al., 2018).

In addition to identifying specific genes showing significant asso‐
ciations with trait variation, we also observed an enrichment of gene 
functions in the top 0.1% of all SNPs. Tree growth and size traits 
were enriched for cellular response to misfolded proteins, which is 
essentially a response to environmental stress (e.g., heat, cold and 
UV; Nakajima & Suzuki, 2013). Specific leaf area was enriched for de‐
fence (“immune”) response, and the density of extrafloral nectaries 
was enriched for glyceraldehyde‐3‐phosphate metabolism, which is 
involved in glycolysis.

4.2 | Genes underlying insect communities

We predicted that insects (e.g., gallers) with the closest associations 
with the host tree would have more genetic correlations than insects 
(e.g., free feeders and ants) that are not closely associated. Our find‐
ings support this prediction in that leaf‐galling, leaf‐mining and leaf‐
rolling insects were associated with aspen genes, while free‐feeding 
insects had no significant genetic associations. However, aphid‐
tending ants had several SNP associations in three different genes. 
Those results indicate that insects in higher trophic levels may be 
influenced by plant genetics, and are similar to the findings of Wimp 
et al. (2005). Of course, our results derive from a single experimental 
garden; insect communities and gene–insect associations may vary 
in natural aspen habitats.

Upon insect herbivory, plants experience damage‐induced ion 
imbalances, which lead to differing cell membrane potentials, cal‐
cium signalling and oxidative stress (Maffei, Mithöfer, & Boland, 
2007). These events alter kinase and phytohormone activity, which 
then influences gene expression (e.g., altering the ratio of JAZ to 
DELLA proteins which can activate or suppress growth‐promoting 
genes, Maffei et al., 2007). Our insect community GWAS and gene 
ontology analyses revealed several candidate genes with functions 
that are consistent with this series of plant–insect events.

First, variation in Tenthredinidae sawflies (primarily leaf‐folding 
Phyllocolpa sp.) was associated with genes enriched for sequestering 
iron ions (that have also been shown to respond to reactive oxygen 
species; Ravet et al., 2009) possibly due to damage‐induced ion imbal‐
ances. Second, variation in leaf blotch miner (P. tremuloidiella) incidence 
was correlated with a vesicle transport protein (Potra000892g07232), 
which is physically located near a calmodulin‐binding NAC protein 
(NTL9) and may influence calcium signalling. Third, variation in ant 
(L. neoniger) incidence and abundance was related to a tocopherol gene 
(Potra002557g19270), which responds to oxidative stress (Porfirova, 
Bergmuller, Tropf, Lemke, & Dormann, 2002). Fourth, variation in in‐
sects (incidence and composition) was related to genes involved in plant 
hormone regulation. For instance, petiole galler (E. populella) incidence 
was related to an abscisic acid receptor (Potra001062g09110), and 
insect community composition was enriched for gene ontology terms 
involved in hormone regulation. Fifth, both petiole gallers and ants 
were associated with genes involved in modifying expression of other 
genes, including Potra001062g09111 (transcriptional silencing via DNA 
methylation), Potra003266g21171 (mRNA splicing factor that responds 
to biotic stress, Shang, Cao, & Ma, 2017) and AT2G40435 (A. thaliana 
homolog, transcription factor SCREAM‐like protein that is involved in 
response to environmental stress, Liu, Srivastava, Che, & Howell, 2007).

We identified both enriched gene functions and SNPs asso‐
ciated with leaf‐galling insects. Nabity, Haus, Berenbaum, and 
DeLucia (2013) compared gene expression patterns in leaf gall tissue 
(Daktulosphaira vitifoliae galls on grape leaves) to those of regular 
leaf tissue. They revealed that leaf galls had upregulated the phenyl‐
propanoid pathway, increased anthocyanin production and cell wall 
biogenesis, changed the expression of glycolysis/cellular respiration 
and downregulated the Calvin cycle. These findings are consistent 
with our gene enrichment analysis; genes associated with leaf‐galling 
insects were enriched for flavonoid and anthocyanin biosynthesis, 
cell wall biogenesis, cellular respiration and the tricarboxylic acid 
cycle. Also, both the Harmandia leaf galls and E.  populella petiole 
galls on our trees were strongly coloured with red/purple pigment, 
suggesting the presence of anthocyanins. In addition, we identified 
an apoptosis‐inducing factor, Potra002833g20082, that was associ‐
ated with Cecidomyiidae (leaf‐galling Harmandia flies and leaf‐rolling 
midges), which may confer resistance to gall formation.

We also identified both enriched gene functions and SNPs 
associated with leaf‐rolling insects. Variation in leaf‐rolling in‐
sect (Tortricidae) abundance was related to genes involved in 
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mechanical stimulus response and defence. For example, variation 
in rustylined leaftiers (C. albosigma, Notodontidae) was correlated 
with a glycerol kinase (A. thaliana homolog, AT4G38225), which is 
involved in glycolysis. Glycolysis produces precursors for the shi‐
kimic acid pathway, which synthesizes secondary plant compounds 
such as condensed tannins and phenolic glycosides. In addition, 
variation in obliquebanded leafroller (C.  rosaceana, Tortricidae) 
abundance was associated with NOXY2 (NONRESPONDING TO 
OXYLIPINS 2, AT5G11630), a salicylic acid‐responsive gene that has 
been shown to play a role in defence against bacterial pathogens 
(Vellosillo et al., 2013).

Both insect community composition and variation in ant 
(Formicidae) abundance and incidence were associated with gamma‐
aminobutyric acid (GABA) signalling (via enriched gene ontology). 
GABA is a nonproteinaceous amino acid that occurs in animals, 
plants and bacteria (Ramesh, Tyerman, Gilliham, & Xu, 2017). In an‐
imals, GABA functions as one of the major inhibitory neurotrans‐
mitters in the central nervous system (Ramesh et al., 2017). In 
plants, GABA signalling influences plant growth, development, 
stress response and long‐distance transport (Ramesh et al., 2017). 
In addition, GABA signalling plays a role in insect resistance (Bown, 
MacGregor, & Shelp, 2006; Scholz, Reichelt, Mekonnen, Ludewig, 
& Mithofer, 2015), since insect‐consumed GABA acts an inhibitory 
neurotransmitter, causing physiological stress in the insect that de‐
creases its growth and survival (Ramesh et al., 2017).

Insect community composition (NMDS of common insect 
species) was also associated with an early nodulin‐like (ENODL) 
transmembrane protein (Potra001060g09097), that is thought to 

transport carbohydrates (Denancé, Szurek, & Noël, 2014). Wang 
et al. (2015) identified three ENODL proteins that putatively in‐
creased Bt rice resistance to brown planthopper infestation, 
thereby suggesting that ENODL proteins may influence plant–in‐
sect interactions. Here, we show that allelic variation in an ENODL 
gene influences insect community species diversity and the abun‐
dance of interacting foundation species: aphids and tending ants 
(Barker et al., 2018; Keith, Bailey, & Whitham, 2010; Lamit et al., 
2015; Wimp & Whitham, 2012), consistent with the notion of an 
ecologically important gene (EIG; Skovmand et al., 2018). The 
mechanism by which ENODL gene variation may influence insects 
in our system remains unknown, but variation in carbohydrate 
transport could directly influence aphids and ants via their inter‐
actions with carbohydrate‐rich honeydew, and/or indirectly influ‐
ence insects via numerous tree traits, including both growth (size) 
and defence. To our knowledge, this is the first identification of 
allelic variation in a plant gene that is associated with a complex 
insect community trait (i.e., insect community composition).

4.3 | Plant trait variation shapes insect communities

While we found no overlap in SNP associations across tree traits 
and insect phenotypes (potentially due to the limited number of 
tree trait‐associated SNPs), our covariate analyses revealed that 
several tree traits explain significant insect SNP associations. These 
results suggest that the tree traits are important in structuring the 
associated insect communities, thereby providing a mechanistic link 
by which plant genes shape insect community composition (e.g., 

TA B L E  3  Summary of tree trait covariates that eliminate or reduce the number of significant SNPs associated with particular insect traits  
for the WisAsp aspen (Populus tremuloides) genetic mapping population (N = 328 genets for insect traits). Covariates that reduce SNP  
associations reveal tree traits that are important in shaping the particular insect phenotype, and are indicated by an “X” below.  
Genome‐wide association models were analysed in plink without a kinship matrix and standardized tree traits (each tree trait was analysed  
in separate models)

Insect trait with signifi‐
cant SNP associations

Tree size/growth Leaf morphology Bud phenology Phytochemistry

Spring 
volume

Spring 
basal 
area

Average 
basal 
area

Average 
volume

Absolute 
growth

Relative 
growth

Basal area 
increment

Specific 
leaf area

Individual 
leaf area

EFN  
density

Timing of 
bud break

Timing of 
bud set

Growing 
season 
length

Condensed 
tannins Salicortin Tremulacin

Phenolic 
glycosidesa

Total 
defence 
chemistryb Carbon:nitrogen Nitrogen

Ecteodemia populella (P/A)           X                            

Blotch Mine (P/A)                 X X       X X   X X X  

Phyllonorycter tremuloi‐
diella (P/A)

X X X     X X   X   X       X X X      

Clostera albosigma (P/A)         X X X   X   X       X X X      

Choristoneura rosaceana   X X X             X X   X X X X      

Cecidomyiidae         X       X X         X   X      

Cecidomyiidae (P/A)                 X X X     X X X X      

Tortricidae   X X X     X   X   X     X X X X      

Lasius neoniger                 X         X X X X      

Lasius neoniger (P/A)                 X           X X X      

Abbreviations: EFN, extrafloral nectary; P/A, presence/absence.
aPhenolic glycosides = combined levels of salicortin and tremulacin. 
bTotal defence chemistry = combined levels of salicortin, tremulacin and condensed tannins. 
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Bangert et al., 2006). Previous work in Populus and Salix has also 
shown that canopy insect communities are shaped by these particu‐
lar plant traits, including plant size (Barbour et al., 2015; Barker et 
al., 2018; Evans et al., 2016; Robinson et al., 2012), individual leaf 
area (Robinson et al., 2012), timing of bud break (Barker et al., 2018; 
Evans et al., 2016; Falk, 2017) and defence phytochemistry (Barbour 
et al., 2015; Barker et al., 2018; Brito, 2017; Wimp et al., 2007). For 
instance, larger plants and plants with larger leaves and longer peti‐
oles have denser and more diverse insect communities (Barker et al., 
2018; Robinson et al., 2012). Timing of bud phenology differentially 
affects the incidence of leaf‐modifying insect species (Barker et al., 
2018). Also, variation in defence phytochemistry corresponds with 
variation in insect communities (Bangert et al., 2006; Wimp et al., 
2007). We recognize that our work was conducted in a young aspen 
plantation with immature trees. Insect communities are likely richer, 
and the plant traits structuring those communities may be different, 
in mature, closed‐canopy aspen forests.

Previously identified Populus genes that correlate with insect 
metrics have been linked to plant traits, including defence and 
leaf morphology. Nine of the 13 insect‐associated QTL found by 
Dewoody et al. (2013) contained shikimate–phenylpropanoid path‐
way genes (both phenolic glycosides and condensed tannins are 
products of that pathway), and two of the QTL were in genomic hot 
spots for leaf morphology. In addition, Bernhardsson et al. (2013) 
found overlap between insect‐associated SNPs and inducible de‐
fence genes (polyphenol oxidases and trypsin inhibitors).

Inclusion of tree trait covariates in our GWA models did not 
eliminate all of the ant‐related genes: the SNPs in the mRNA 

splicing factor (Potra003266g21171) that responds to biotic stress 
remain. This implies that (a) tree traits that we did not survey or (b) 
more likely, biotic/environmental factors (e.g., aphid populations; 
most of our ant species were tending aphid colonies), structure ant 
incidence and abundance.

While we have focused on bottom‐up mechanisms underlying 
insect communities on aspen, we recognize that top‐down factors 
(e.g., predation and parasitism) also influence insect herbivores 
(Katano, Doi, Eriksson, & Hillebrand, 2015; van Veen, Morris, & 
Godfray, 2006; Vidal & Murphy, 2018). A meta‐analysis by Vidal 
and Murphy (2018) revealed that top‐down forces are often stron‐
ger than bottom‐up effects in influencing insect herbivore fitness. 
Yet, these differences varied across insect groups (e.g., specialist 
vs. generalist insects and across feeding guilds). Thus, our limited 
association of plant genes to insect metrics likely derived in part 
from the effects of other ecological interactions on structuring 
these insect communities.

4.4 | Gene coverage

Our genetic data set included 56% of the P. tremuloides genes, a cov‐
erage rate that reduced our ability to detect significant associations 
for some traits. To determine the extent to which our probe design 
included or excluded genes that are known to influence particular 
traits, we used Knetminer (Knowledge Network Miner, Hassani‐Pak, 
2017) with P. trichocarpa homologs to compare our gene list to lists 
of genes that are associated with particular trait search terms (e.g., 
“phenylpropanoid pathway”, “biomass”, “SLA” and “insect”). Our gene 

TA B L E  3  Summary of tree trait covariates that eliminate or reduce the number of significant SNPs associated with particular insect traits  
for the WisAsp aspen (Populus tremuloides) genetic mapping population (N = 328 genets for insect traits). Covariates that reduce SNP  
associations reveal tree traits that are important in shaping the particular insect phenotype, and are indicated by an “X” below.  
Genome‐wide association models were analysed in plink without a kinship matrix and standardized tree traits (each tree trait was analysed  
in separate models)

Insect trait with signifi‐
cant SNP associations

Tree size/growth Leaf morphology Bud phenology Phytochemistry

Spring 
volume

Spring 
basal 
area

Average 
basal 
area

Average 
volume

Absolute 
growth

Relative 
growth

Basal area 
increment

Specific 
leaf area

Individual 
leaf area

EFN  
density

Timing of 
bud break

Timing of 
bud set

Growing 
season 
length

Condensed 
tannins Salicortin Tremulacin

Phenolic 
glycosidesa

Total 
defence 
chemistryb Carbon:nitrogen Nitrogen

Ecteodemia populella (P/A)           X                            

Blotch Mine (P/A)                 X X       X X   X X X  

Phyllonorycter tremuloi‐
diella (P/A)

X X X     X X   X   X       X X X      

Clostera albosigma (P/A)         X X X   X   X       X X X      

Choristoneura rosaceana   X X X             X X   X X X X      

Cecidomyiidae         X       X X         X   X      

Cecidomyiidae (P/A)                 X X X     X X X X      

Tortricidae   X X X     X   X   X     X X X X      

Lasius neoniger                 X         X X X X      

Lasius neoniger (P/A)                 X           X X X      

Abbreviations: EFN, extrafloral nectary; P/A, presence/absence.
aPhenolic glycosides = combined levels of salicortin and tremulacin. 
bTotal defence chemistry = combined levels of salicortin, tremulacin and condensed tannins. 
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list covered 54%–71% of the genes associated with tree traits and 
insect resistance (Table S5). Although our probe set did not include 
every gene, our findings nonetheless reveal new gene associations 
that underlie both Populus traits and canopy insect communities. In 
comparison, most previous Populus GWAS studies captured smaller 
sets of genes (1,233–18,153 genes) with fewer SNPs (1,233–77,000 
SNPs; McKown et al., 2014, Du et al., 2016, Hallingbäck et al., 2016, 
Fahrenkrog et al.., 2017,). Several recent studies of Populus have 
employed greater coverage, but only examined individual tree traits 
(e.g., bud break; McKown, Klápště, Guy, El‐Kassaby, & Mansfield, 
2018 and lignin biosynthesis; Zhang et al., 2018).

5  | CONCLUSIONS

Over the last 15  years, community genetics perspectives linking 
plant intraspecific genetic variation to associated community met‐
rics have garnered considerable attention in the literature of evo‐
lutionary ecology. Most of the relevant empirical studies, however, 
have been conducted at the level of plant genotypes, leaving the 
underlying genes unresolved. Here, we identified ten new Populus 
genes that structured associated insect communities, complement‐
ing the previously identified list of QTL from Bernhardsson et al. 

(2013) (12 SNPs, 2013) and Dewoody et al. (2013) (14 QTL, 2014). 
Our findings also reveal that ecologically relevant plant traits struc‐
ture gene–insect associations, highlighting the importance of these 
traits as the mechanistic bridge between plant genes and insect 
communities (Barbour et al., 2015; Barker et al., 2018; Harrison et 
al., 2018; Robinson et al., 2012).

Genetic variation in expression of key plant traits is influenced 
by both plant ontogeny and environmental context (Lindroth & St. 
Clair, 2013). Future work should address how plant genetic contri‐
butions to insect community organization may shift across plant 
ontogenetic trajectories (Gosney et al., 2014; Holeski, Hillstrom, 
Whitham, & Lindroth, 2012) and environmental gradients (Burkle, 
Souza, Genung, & Crutsinger, 2013).
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